
Dashticz Documentation
Release beta

Rob Geerts

Mar 24, 2022

Contents:

1 Introduction 3
1.1 Why Dashticz . 3
1.2 Concept . 3

2 Getting started 5
2.1 Installation . 5
2.2 Configuring a basic Dashticz Dashboard . 8

3 Configuration 13
3.1 Dashticz configuration . 13
3.2 Blocks . 21
3.3 Columns . 174
3.4 Screens . 174

4 Customizations 179
4.1 Styling via custom.css . 179
4.2 Functionality via custom.js . 190

5 Tips and Tricks 197
5.1 Dashticz security . 197
5.2 Dashticz security (method 2) . 199
5.3 Use of Web Fonts . 200
5.4 Changing alert icon colors dynamically . 200

6 Release Notes 203
6.1 Upgrade instructions . 203
6.2 Release Notes . 208

7 Troubleshooting 231
7.1 Connection . 231
7.2 Docker . 232
7.3 Domoticz blocks . 233

8 For Developers 235
8.1 Code . 235
8.2 Design . 239
8.3 Translations . 241

i

8.4 Documentation . 242

9 Indices and tables 245

ii

Dashticz Documentation, Release beta

This documentation describes how to install and configure Dashticz.

For Dashticz’s beta version documentation go to: https://dashticz.readthedocs.io/en/beta/

For Dashticz’s master version documentation go to: https://dashticz.readthedocs.io/en/master/

Contents: 1

https://dashticz.readthedocs.io/en/beta/
https://dashticz.readthedocs.io/en/master/

Dashticz Documentation, Release beta

2 Contents:

CHAPTER 1

Introduction

1.1 Why Dashticz

The Dashboard of Domoticz is quite powerful. The disadvantage is that it’s only possible to show information known
in Domoticz. There is where Dashticz steps in. Dashticz is able to show (almost) all Domoticz information. In addition
to that it’s possible to show information from all kind of other sources.

1.2 Concept

The Dashticz dashboard may consist of several screens.

Every screen consist of one or more columns.

In every column you place one or more blocks.

A block may be a Domoticz device, external content being displayed in a frame, or some special block.

The next sections show how to setup your system, how to configure Dashticz, how to configure a block, how to add
blocks to a column, and how to define screens.

3

Dashticz Documentation, Release beta

4 Chapter 1. Introduction

CHAPTER 2

Getting started

2.1 Installation

2.1.1 Automatic install

Note: The installation scripts currently only works on Raspberry (except xbian) and Ubuntu

For the automatic install open a terminal in a folder of choice where Dashticz V3 will get installed:

mkdir dev
cd dev

Then start the installation script with:

. <(wget -qO - https://raw.githubusercontent.com/Dashticz/dashticz/beta/scripts/
→˓dashticz_install.sh)

The script:

• asks for a folder where to install Dashticz V3

• asks to install the beta or master branch : For now only beta works with the auto install!!

• Clones the Dashticz V3 repository and selected branch into a new folder

• Asks for the IP adress of your Domoticz server.

• Copies CONFIG_DEFAULT.js to CONFIG.js with the correct IP address for Domoticz

Then a Makefile is executed which:

• Installs Docker (if not installed yet)

• Creates a Dashticz V3 container, named dtv3, containing Apache and PHP

• FInd the first free port, 8082 or higher

5

Dashticz Documentation, Release beta

• Starts the container on the first free port

• Mounts the dashticz folder to the web-root of the container

• Shows the Dashticz url

If you open this url then the default Dashticz dashboard becomes visible.

So no more need to configure Apache and/or PHP! It just works out-of-the box. You need a few 100 MB free space
on your system.

The first time the installation may take a while (5 - 15 minutes?): be patient.

Update from a previous version

If the default page is working then you can copy your previous CONFIG.js, custom.css, custom.js from your previous
installation to dashticz/custom.

Just refresh your browser, and your new dashboard is shown. No need to rebuild the docker container.

2.1.2 Manual Setup

Manual setup consists of two steps:

• Preparing your system

• Installing Dashticz

System preparation

Since Beta 2.4.6 (October 2018) the installation instruction changed. Main reason is that for most functionality PHP
support in the web server is needed. The Domoticz web server doesn’t support PHP. That means that Dashticz needs
to be installed under a different web server with PHP enabled. The installation instruction consists in two steps:

Installation of a web server

This example shows installation of Apache on Raspberry in it’s most basic configuration: running at port 80. Besides
Apache also PHP needs to be installed, since it’s used by the Calendar and Garbage module in Dashticz.

sudo apt-get update
sudo apt-get install apache2 php php-xml php-curl libapache2-mod-php
sudo systemctl restart apache2

Note: On some Raspberry configurations the installation of php is failing. In that case you can try the alternative
installs under Advanced Installation below

Now check whether Apache is running by browsing to http://<YOUR IP> You should see the Apache demo page.

Alternative installations

For debian/stretch:

• https://tecadmin.net/install-php-debian-9-stretch/ (PHP installation instructions)].

6 Chapter 2. Getting started

https://tecadmin.net/install-php-debian-9-stretch/

Dashticz Documentation, Release beta

Functionality that is lost without PHP:

• calendar

• garbage

• savings settings from Dashticz

• version check

• CORS proxy, which is used for TVguide, news, traffic info, frames, images in buttons (You can switch an
external CORS proxy as well.)

Quick install for Synology NAS

• Install Apache HTTP Server (Web Station will be installed too) and PHP

• In Web Station configure your HTTP back-end server and PHP (PHP Extensions curl and openssl needs to
be selected)

• Download Dashticz ZIP file from GitHub https://github.com/Dashticz/dashticz (choose branch)

• Create Dashticz folder on your Web Server

• Unpack downloaded Dashticz ZIP file to your Dashticz folder

• Copy CONFIG_DEFAULT.js to CONFIG.js

• Edit CONFIG.js to your needs and set write permission

Dashticz installed on ISS

• You have to register a MIME type for tpl extension mime-type type="text/x-phpbb-template

• See also https://bobcares.com/blog/http-error-404-3-not-found/ and https://forums.iis.net/t/1095097.aspx

Dashticz Installation

Example for Raspberry PI running Apache web server: Assumption:

• Apache is running at http://192.168.1.3 on the default port 80 (but this can be any IP:port address)

• Domoticz is running at http://192.168.1.3:8084

First clone the dashticz repository to a folder of your choice:

cd /home/pi
git clone https://github.com/Dashticz/dashticz

If you prefer the development branch (might be less stable, but latest and greatest), then use the following git clone
command:

git clone https://github.com/Dashticz/dashticz --branch beta

After the installation is finished, go to the /home/pi/Dashticz/custom/ folder, copy the CON-
FIG_DEFAULT.js file to CONFIG.js (mind the CAPITALS!), and edit it with the basics:

cd dashticz/custom/
cp CONFIG_DEFAULT.js CONFIG.js
nano CONFIG.js

Example of CONFIG.js:

2.1. Installation 7

https://github.com/Dashticz/dashticz
https://bobcares.com/blog/http-error-404-3-not-found/
https://forums.iis.net/t/1095097.aspx

Dashticz Documentation, Release beta

var config = {}
config['language'] = 'nl_NL'; //or: en_US, de_DE, fr_FR, hu_HU, it_IT, pt_PT, sv_SV
config['domoticz_ip'] = 'http://192.168.1.3:8084';
config['domoticz_refresh'] = '5';
config['dashticz_refresh'] = '60';

You can read more about the connection configurtion Connection.

Then create a symbolic link from the root of the www folder of your web server to the previously created Dashticz
location:

sudo ln -s /home/pi/dashticz/ /var/www/html

Set the correct permissions to the files and folders:

chmod -R a+rX /home/pi/dashticz

If you want to be able to save the settings via Dashticz to CONFIG.js then you have to give write permission to
CONFIG.js for root:

chmod a+w /home/pi/dashticz/custom/CONFIG.js

Now you can browse to the dashboard: http://192.168.1.3/dashticz/index.html Replace 192.168.1.3 with the IP Ad-
dress (and Port number) for your web server, NOT your Domoticz IP!

By default, Dashticz will show all your Domoticz favorites on the dashboard.

Updating

Option 1 - From terminal you can add the following command in Dashticz folder:

git pull

Option 2 - Download zip file from GitHub, copy and extract in your Dashticz folder. Create backup of your custom
folder(s) first.

Troubleshooting

After updating my Ubuntu version I had to manually enable php7.3 on Apache:

sudo a2enmod php7.3
sudo systemctl restart apache2

Dashticz can be installed in two ways:

• Automatic install via the installation script

• Manual install

2.2 Configuring a basic Dashticz Dashboard

If you followed the steps as described in Installation then you are prepared for creating your own Dashboard.

8 Chapter 2. Getting started

http://192.168.1.3/dashticz/index.html

Dashticz Documentation, Release beta

2.2.1 Step 1: Default Dashboard

Let’s start with a minimal config. Create the config file custom/CONFIG.js with the following content:

var config = {}
config['language'] = 'nl_NL'; //or: en_US, de_DE, fr_FR, hu_HU, it_IT, pt_PT, sv_SV
config['domoticz_ip'] = 'http://192.168.1.3:8084';
config['domoticz_refresh'] = '5';
config['dashticz_refresh'] = '60';

Replace the domoticz_ip config setting with the ip-address of your Domoticz server.

This should give a result like this:

In your situation Dashticz might show less devices, depending of course on how many devices you have defined in
Domoticz. Further, with the default settings Dashticz only shows the Domoticz devices that are being used in Domoticz
and marked as favorite.

If you don’t see any device then probably your Domoticz connection is not working.

Troubleshooting

• Check your Domoticz IP address and port number

• If you’ve configured a Domoticz username/password then add the following settings to CONFIG.js

config['user_name'] = '<Domoticz Username>';
config['pass_word'] = '<Domoticz Password>';

If your initial dashboard is working then let’s continue with step 2.

2.2.2 Step 2: Creating a custom layout

In this example we’ll create a simple dashboard, consisting of

• one screen.

• two columns, consisting of 1/3 and 2/3 of the screen width.

• two devices in the second column next to each other.

2.2. Configuring a basic Dashticz Dashboard 9

Dashticz Documentation, Release beta

First we have to add the block definition for the devices. For this you have to know the Domoticz device ID. You can
find your device ID in the Settings->Devices overview of Domoticz. Choose two switch devices. In this example we’ll
use device id 120 and 121.

Add the following to CONFIG.js:

//Definition of blocks
blocks = {}
blocks[120] = {

width: 6
}

blocks[121] = {
width: 6

}

This means we want to use device id 120 and device id 121. We give them width of 6.

Explanation of width For setting the width of blocks (and columns) the grid system is used. The total available width
is 12. If you set the width of a block to 6 then 50% of the column width will be used for the block width.

So in the previous example both blocks will have a width of 50% of the column we will place them in, meaning they
will fit into one row.

Next, we add the column definitions to CONFIG.js:

//Definition of columns
columns = {}
columns[1] = {

//In this example: No blocks are defined in this column
//This column will be empty
width: 4

}
columns[2] = {

blocks : [120, 121],
width: 8

}

In this example we’ve defined two columns. The first one will have width 4 (33% screen width. The second one has
width 8, meaning 67% of screen width).

In column 2 we place device 120, as defined by blocks[120] and device 121, as defined by blocks[121]

As the last step the screens need to be defined:

//Definition of screens
screens = {}
screens[1] = {

columns: [1, 2]
}

One screen has been defined, consisting of column 1 and column 2.

Just to be sure, add the following CONFIG settings as well:

config['use_favorites'] = 0; //Request all Domoticz Devices, not only favorites
config['auto_positioning'] = 0; // Use 0 this if you have defined your own columns

Your complete CONFIG.js now should look as follows:

10 Chapter 2. Getting started

Dashticz Documentation, Release beta

var config = {}
config['language'] = 'nl_NL'; //or: en_US, de_DE, fr_FR, hu_HU, it_IT, pt_PT, sv_SV
config['domoticz_ip'] = 'http://192.168.178.18:8080';
config['domoticz_refresh'] = '5';
config['dashticz_refresh'] = '60';

config['use_favorites'] = 0; //Request all Domoticz Devices, not only favorites
config['auto_positioning'] = 0; // Use 0 this if you have defined your own columns

//Definition of blocks
blocks = {}
blocks[120] = {

width: 6
}

blocks[121] = {
width: 6

}

//Definition of columns
columns = {}
columns[1] = {

//In this example: No blocks are defined in this column
//This column will be empty
width: 4

}
columns[2] = {

blocks : [120, 121],
width: 8

}

//Definition of screens
screens = {}
screens[1] = {

columns: [1, 2]
}

This should give the following result:

2.2.3 Retrieve status of a device

You can get the status of a specific device with: http://192.168.1.3:8084/json.htm?
type=devices&rid=IDX

2.2. Configuring a basic Dashticz Dashboard 11

Dashticz Documentation, Release beta

• Replace 192.168.1.3 with the IP Address (and Port number) for your Domoticz!

• IDX = id of your device (This number can be found in the Domoticz’ devices tab in the column “IDX”)

First you have to install Dashticz, then you can configure your Dashboard.

12 Chapter 2. Getting started

CHAPTER 3

Configuration

The Dashticz configuration is stored in the file [dashticz folder]/custom/CONFIG.js and consists of
several parts.

The first part is used to configure all kind of global Dashticz settings, including the Domoticz connection, language
settings, etc. See Dashticz configuration.

The second part is used to define all blocks.

In the third part the columns are defined, followed by the screens.

These four parts will be discussed in the following sections.

3.1 Dashticz configuration

Dashticz can be configured by editing the CONFIG.js file. This file you can find in the subfolder [dashticz]/
custom.

Note: TIP! If CUSTOM POSITIONING is not working check if you have uncomment all lines from the
blocks/colums/screens you want.

In the following part, the CONFIG.js is divided in sections. For each section there will be an explanation how to use.

First part describes setting up the configuration of the Domoticz connection. After that an overview of all configuration
parameters can be found.

3.1.1 Connection

Below the basic configuration to make the connection with Domoticz work.

13

Dashticz Documentation, Release beta

var config = {}
config['language'] = 'nl_NL'; //or: en_US, de_DE, fr_FR, hu_HU, it_IT, pt_PT, sv_SE
config['domoticz_ip'] = 'http://192.168.1.3:8084';
config['domoticz_refresh'] = '5';
config['dashticz_refresh'] = '60';

Parameter Description
con-
fig[‘language’]

can be used to select the language, Dutch (nl_NL), English (en_US), German (de_DE),French
(fr_FR), Hungarian (hu_HU), Italian (it_IT), Portuguese (pt_PT), or Swedish (sv_SV)

con-
fig[‘domoticz_ip’]

is the URL to your Domoticz installation (with the correct PORT address)

con-
fig[‘domoticz_refresh’]

the refresh rate of Dashticz to get information from Domoticz

con-
fig[‘dashticz_refresh’]

the refresh rate of the Dashticz Dashboard

3.1.2 Config parameters

Parameter Description
domoticz_ip

IP Address and Portnumber of your Domoticz installation
'http://192.168.1.3:8084'

user_name
Domoticz username
'' = No username (default)
'john' = Use ‘john’ as Domoticz username

pass_word
Domoticz password
'' = No password (default)
'secret' = Use ‘secret’ as Domoticz password

loginEnabled
Enable if you want a login form to dashticz
false = No login form (default)
true = Show login form

login_timeout
Time to keep Dashticz logged in
60 = Time in minutes

enable_websocket
Enable Domoticz websocket connection. See Websocket connection
false = Dashticz will use a http connection.
true = Dashticz will switch to a websocket connection if the Domoticz version is above
4.11000.

Continued on next page

14 Chapter 3. Configuration

Dashticz Documentation, Release beta

Table 1 – continued from previous page
Parameter Description
domoticz_timeout

Time Dashticz is fetching for Domoticz devices during the initial request. After this time
Dashticz falls back from websocket to HTTP.
2000 = Time in <value> milliseconds (default=2000).

app_title
Name of the Dashboard - Title to show in the Topbar
'Dashticz' = Show ‘Dashticz’ in the top bar

domoticz_refresh
Number of seconds to get the information from Domoticz
5 = Refresh of Domoticz data every 5 seconds

dashticz_refresh
Number of minutes to refresh the Dashticz dashboard
60 = Refresh of the Dashticz dashboard every 60 minutes

default_news_url
URL of the default news feed
'http://www.nu.nl/rss/algemeen' = Example for nu.nl

news_scroll_after
Enter the ammount in seconds (delay)
5 = Scroll the news message every 5 seconds

standby_after
Enter the amount of minutes
0 = No standby mode(default)
1..1000 = Switch to standby after <value> minutes

start_page
Page to show after starting Dashticz
1..100 = Page number

vertical_scroll
Enable vertical scroll in case Dashticz dashboard height is more than the screen height
0 = Disable vertical scroll
1 = Enable vertical scroll if swiper is disabled
2 = Enable vertical scroll (=default)

enable_swiper
Enable horizontal swiping in case multiple screens have been defined.
0 = Swiper disabled
1 = Swiper enabled if screen width > 760px
2 = Swiper enabled (=default)

Continued on next page

3.1. Dashticz configuration 15

Dashticz Documentation, Release beta

Table 1 – continued from previous page
Parameter Description
swiper_touch_move

Swipe the screen by touch. Only applicable in case swiper is enabled.
0 = Swipe by touch disabled
1 = Swipe by touch enabled

auto_swipe_back_to
when no activity, swipe back to the selected page. Also see Auto swipe, auto slide
1..100 = page number (default: 1)

auto_swipe_back_after
The amount of seconds after which Dashticz will start with auto swipe/auto slide. Also see Auto
swipe, auto slide
0 = No auto swiping (default)
1..9999 = Start auto swipe back after <value> seconds the last screen touch/mouse activity.

auto_slide_pages
Loop all pages and change page every x seconds,

set config['auto_swipe_back_to'] = 0. Also see Auto swipe, auto slide
0 = Auto slide is disabled. (=default)
1..9999 = Auto slide to the next page every <value> second

slide_effect
Control which Screenslider effect you prefer
'slide', 'fade', 'cube', 'coverflow', 'flip'

standard_graph
Default Graph shown on the Dashticz Dashboard
'HOUR', 'MONTH', 'DAY'

security_panel_lock
If set the Security Panel in Domoticz or Dashticz to ‘Arm - Away’, then Dashticz will
automatically load a full screen panel.
0 = Loading Security Panel full screen disabled (default)
1 = Loading Security Panel full screen enabled

language
Default language of Dashticz. See the lang folder for all supported languages.
'en_us' = default
'nl_NL', 'de_DE', '...'

timeformat
Configure the TimeFormat
'DD-MM-YY HH:mm' = default

calendarformat
Configure the Calendar Date/Time format.
'dd DD.MM HH:mm' = default

Continued on next page

16 Chapter 3. Configuration

Dashticz Documentation, Release beta

Table 1 – continued from previous page
Parameter Description
calendarlanguage

Controls the weather dates and garbage pickup dates language
'<LANGUAGE>'

calendarurl '<url>' = Configure your Calendar URL if only 1 Calendar (ICS)
boss_stationclock

Configure your type of clock
'NoBoss', 'BlackBoss', 'RedBoss' = Default, 'ViennaBoss'

gm_api [API KEY] = API Key to use with the Google Maps functionality
gm_latitude [LATITUDE] = Enter the Latitude to use within Google Maps
gm_longitude [LONGITUDE] = Enter the Longitude to use within Google Maps
gm_zoomlevel

Enter the Google Maps zoom level
1 = Whole world
2..14

15 = Most detail

wu_api
'[API KEY]'

Your Wundergrond Weather API key. You can get a API key at
https://www.wunderground.com/weather/api/d/pricing.html ‘. ‘’Edit: You can no longer get a
free API key from Wunderground”’

wu_city '[CITY]' Put here your weather city.
wu_country '[COUNTRY]' Put here your weather country
wu_name '[CITY]' Alternative display name of your city
switch_horizon '<url>' (Only Dutch users) If you have a Ziggo Horizon box, you can set the url of the Horizon

box here
host_nzbget '[IP ADDRESS:PORT NUMBER]' Configure the IP Address and Portnumber of your NZB

Host
spot_clientid '[CLIENTID]' Configure your Spotify Client ID (see also Spotify)
selector_instead_of_buttons

Choose how to show your selector switches
0 As buttons
1 As dropdown menu

auto_positioning
Configure the ability to define your own positioning for the buttons (in combination with
config['use_favorites'])
0 Use this if you have defined your own columns
1 Default

use_favorites
0 Show all domoticz devices (default)
1 Only show Domoticz devices marked as favorite in Domoticz
If use auto positioning, then this item should be 1

Continued on next page

3.1. Dashticz configuration 17

https://www.wunderground.com/weather/api/d/pricing.html

Dashticz Documentation, Release beta

Table 1 – continued from previous page
Parameter Description
use_cors

0 Don’t use CORS proxy for OpenWeatherMap (default)
1 Use CORS proxy for OpenWeatherMap. Needed on Android 4.4.2.

last_update 0 / 1 To show the time when the device was updated for the last time
hide_topbar

0 / 1
Hide or Show Topbar

hide_seconds
0 / 1
Show the seconds of the clock

hide_seconds_stationclock
0 / 1
Configure if you like to show seconds in the StationClock

use_fahrenheit
0 / 1
Select temperature in Celcius (Default) of Fahrenheit

use_beaufort
0 / 1
Use Bft instead of m/s for windspeed

translate_windspeed
0 / 1
For windspeed use north northwest instead of NNW

static_weathericons’
0 / 1
Use Static or ‘moving’ weather icons

hide_mediaplayer’
0 / 1
When you have a mediaplayer connected, hide it when nothing is playing

selector_instead_of_buttons’
0 / 1
Use buttons for the selector switch in stead of the dropdown menu

settings_icons
["settings", "fullscreen"]

Show the given icons if the settings block is selected. Available: “settings”, “fullscreen”

shortdate’
‘D MMM’
Short format for dates, see https://momentjs.com/ for all options.

Continued on next page

18 Chapter 3. Configuration

https://momentjs.com/

Dashticz Documentation, Release beta

Table 1 – continued from previous page
Parameter Description
longdate

‘D MMMM YYYY’
Long format for dates, see https://momentjs.com/ for all options.

shorttime
HH:mm
Short format for time, see https://momentjs.com/ for all options.

longtime
HH:mm:ss
Long format for time, see https://momentjs.com/ for all options.

weekday
‘dddd’
Format to show the weekday, see https://momentjs.com/ for all options.

no_rgb
0 / 1
Hide or show RGB button on switch

colorpicker
0: No RGB colorpicker, 1: Old style RGB colorpicker, 2: New style RGB colorpicker
Choose the default RGB colorpicker for RGB devices

standby_call_url’
[URL]
Enter the url for adjusting the brightness when entering stand-by mode

standby_call_url_on_end
[URL]
Enter the url for adjusting the brightness when exiting stand-by mode

hide_off_button
0 / 1
Hide off button of selector switch

speak_lang
Text to speech language
'<LANGUAGE>' Language options: de-DE, en-US, es-ES, fr-FR, it-IT, nl-NL, pl-PL, ru-RU

longfonds_zipcode
Longfonds (Dutch air quality check) zipcode.
'1234AZ' Language options

longfonds_housenumber
Longfonds (Dutch air quality check) housenumber
'123' Language options

3.1. Dashticz configuration 19

https://momentjs.com/
https://momentjs.com/
https://momentjs.com/
https://momentjs.com/

Dashticz Documentation, Release beta

3.1.3 Dashticz URL parameters

Dashticz parameters can be configured via the Dashticz URL as well. For instance, to start Dashticz with a custom
title and set the dashticz refresh period to 300 minutes, use the following URL:

http://<dashticz-ip:port>/?app_title=Living room&dashticz_refresh=300

Besides the Dashticz configuration parameters, the following additional parameters can be used in the Dashticz URL:

Parameter Description
cfg

The Dashticz configuration file to be used instead of CONFIG.js.
CONFIG.room2.js

cfg2

The name of a second configuration file, which will be loaded after CONFIG.js.
CONFIG.extra.js

css

The CSS file to be used instead of custom.css.
custom.mobile.css

folder

The folder containing the configuration files. (Default: custom)
custom/room1

So, to load Dashticz with a different config file, use the following URL:

http://<dashticz ip:port>/?cfg=CONFIG.room2.js

The URL parameters can be accessed in CONFIG.js or custom.js via the global variable _PARAMS:

if (_PARAMS['myownparam']=='2') {
screen[2].columns = [2,4,5]

}

3.1.4 Usage

PHP based CORS proxy

To be able to load resources from other domains, like tvguide data and news updates, we need a CORS proxy (Cross
Origin Resouce Sharing). Public CORS proxies exist on the internet, like cors-anywhere.herokuapp.com. These public
CORS proxies might be slow or not available at all.

A basic PHP based CORS proxy has been integrated into Dashticz.

For normal use just remove the config['default_cors_url'] from your CONFIG.js and the internal CORS
proxy will be used.

If you prefer to use a different CORS proxy you can define it in CONFIG.js as usual:

20 Chapter 3. Configuration

Dashticz Documentation, Release beta

config['default_cors_url'] = 'http://cors-anywhere.herokuapp.com'

In case PHP is not installed it falls back to the defined CORS proxy in config['default_cors_url']. In case
config['default_cors_url'] is not set, it will use cors-anywhere.herokuapp.com by default.

Websocket connection

From v4.11000 Domoticz supports a so called websocket connection next to the standard http(s) connection.

Note: Currently the Domoticz stable version is 4.10717 which doesn’t support the websocket connection. That means
you have to update to the Domoticz develop branch.

Warning: The Domoticz develop branch may give issues, especially on Raspberry PI. Make a backup of Do-
moticz first! If you switch to the develop branch, the Domoticz database will be upgraded as well, and cannot be
downgraded.

The advantages of a websocket connection:

• instant updates in Dashticz in case of a changing Domoticz device

• Faster and less overhead

To prevent switching to a websocket connection add the following setting to CONFIG.js:

config['enable_websocket'] = false;

In the <gif> below you see the instant updates in action. On the right you see the Domoticz dashboard. On the left
Dashticz.

3.2 Blocks

The visible elements on the Dashticz dashboard are called blocks. Several block types are supported:

3.2.1 Domoticz blocks

Several types of Domoticz blocks can be defined:

• Devices

• Scenes

• Groups

• Variables

• Texts

3.2. Blocks 21

Dashticz Documentation, Release beta

Devices

Almost all Domoticz devices can be shown on the Dashticz dashboard. Before you can use a device in a column you
must make it known in your CONFIG.js as follows:

blocks = {} //only once
blocks[123] = {
title: 'My device',
width: 12

}

If you use anything other than a number you have to put it between quotes: ['s1'] ['v3'] ['123_1']

The number 123 is the Domoticz device id. The example above also shows the use of two parameters: title and
width. For a full list of parameters see Block parameters.

For most devices containing a value, like temperature, power, etc, it’s possible to show the data as a graph. See Graphs.

You can also use custom names for the block identfier. In that case you have to add the idx parameter to indicate
which Domoticz device you want to use:

blocks['my device'] = {
idx: 123

}

Grouped devices

To use grouped devices in a column you must make it known in your CONFIG.js as follows:

blocks['lights'] = {
blocks: [
'light_livingroom',
'light_kitchen',
'light_bathroom'
]

}

Now you can add all 3 light blocks to a column with the following code:

columns[1] = {}
columns[1]['blocks'] = [
'lights'

]

Scenes and Groups

To select a Domoticz Group or Scene add ‘s’ in front of the Scene/Group ID.

Example:

blocks['s12'] = { //Select group/scene with Domoticz index 12
title: 'My group 12'

}

22 Chapter 3. Configuration

Dashticz Documentation, Release beta

Variables

To select a Domoticz variable add ‘v’ in front of the Domoticz variable ID.

Example:

blocks['v3'] = { //Select variable with Domoticz index 3
title: 'My variable 3'

}

After that you can use 'v3' in your column definitions in CONFIG.js as usual.

A list of all Domoticz variables can be obtained via:

http://[DomoticzIP:Port]/json.htm?type=command¶m=getuservariables

Block parameters

Parameter Description
width 1..12: The width of the block relative to the column width
title '<string>': Custom title for the block
idx

Index of the Domoticz device id, group/scene id, or variable id you want to use.
<idx> or '<idx>': Device idx to use
'<idx>_<subidx>': To select subdevice from Domoticz device, like temperature/humidity.
's<idx>': Select group or scene with id <idx>
'v<idx>': Select variable with id <idx>

icon
Defines alternative icon of the device instead of the default, choose from:
https://fontawesome.com/icons?d=gallery&m=free
'fas fa-eye'

image
If you want to show an image instead of an icon, place image in img/ folder
'bulb_off.png'

iconOn
Icon to show in case the device state is on.
'fas fa-eye'

iconOff
Icon to show in case the device state is off.
'fas fa-eye'

imageOn
Image to show in case the device state is on. Place image in img/ folder
'bulb_off.png'

Continued on next page

3.2. Blocks 23

https://fontawesome.com/icons?d=gallery&m=free

Dashticz Documentation, Release beta

Table 2 – continued from previous page
Parameter Description
imageOff

Image to show in case the device state is off. Place image in img/ folder
'bulb_off.png'

textOn Text to display in case the device is on.
textOff Text to display in case the device is off.
switch

true Switch title and data
false (default)

hide_data
true Don’t show data
false (default) Show data field

last_update
true (default) Show the time when this block was updated for the last time
false Don’t show the last update time for this block

flash
Controls the flashing of the block when it’s value changes.
0 : No flashing (=default)
1..1000 : Duration (in ms) of the flashing effect

hide_stop
true Hide stop button for applicable devices, like blinds
false (Default) Show stop button

playsound
Play a sound when a device changes
'sounds/ping.mp3'

playsoundOn
Play a sound when a device changes to On
'sounds/ping.mp3'

playsoundOff
Play a sound when a device changes to Off
'sounds/ping.mp3'

speak
Speaks text when a device changes
'Device status has changed'

speakOn
Speaks text when a device changes to on
'Device is on'

Continued on next page

24 Chapter 3. Configuration

Dashticz Documentation, Release beta

Table 2 – continued from previous page
Parameter Description
speakOff

Speaks text when a device changes to off
'Device is off'

protected
true Protect switching manually in Dashticz (not in Domoticz)
false (Default) Switch state can be changed in Dashticz

confirmation
0 No confirmation (default)
1 Dashticz asks the user for confirmation before changing a switch-device

password
Password protect switches, buttons, thermostats, sliders, blinds
'secret': Password to use

gotoslide
Goto screen when a device changes
1 .. 99

gotoslideOn
Goto screen when a device changes to on
1 .. 99

gotoslideOff
Goto screen when a device changes to off
1 .. 99

popup
This allows the popup to use all the block parameters that a graph block does, allowing users to
style the graph.
popup: 'popup_your_graph'

graph
Popup graphs enabled by default for most block types.
graph: false will disable a popup graph.

openpopup Open a popup when a device changes. See Usage of openpopup(On)(Off)
openpopupOn Open a popup when a device changes to on. See Usage of openpopup(On)(Off)
openpopupOff Open a popup when a device changes to off. See Usage of openpopup(On)(Off)
addClass

The CSS class name, that will be added to the block.
'myclassname': Define ‘myclassname’ in custom.css

unit
String that will be placed behind the device value to indicate the unit.
'kilowatt': The string will replace the default unit.

url '<url>': URL of the page to open in a popup frame or new window on click. For text blocks.
Continued on next page

3.2. Blocks 25

Dashticz Documentation, Release beta

Table 2 – continued from previous page
Parameter Description
newwindow

0: open in current window
1: open in new window
2: open in new frame (default, to prevent a breaking change in default behavior)
3: no new window/frame (for intent handling, api calls). HTTP get request.
4: no new window/frame (for intent handling, api calls). HTTP post request. (forcerefresh not
supported)

colorpicker
Choose the RGB colorpicker for RGB devices. See RGB Color picker
0: No RGB colorpicker
1: Old style RGB colorpicker
2: New style RGB colorpicker

mode
Parameter for specific functionality
1: Set mode: 1 for Hue RGBWW devices having colorpicker: 2

batteryThreshold
If the battery level is below batteryThreshold then a battery icon will be displayed. See
Battery level
Default value is defined by config[‘batteryThreshold] (=30)
15: Only show the battery icon when the battery level is below 15%.

There are several additional parameters for Graphs. See Graphs

Usage

Example of a block definition:

var blocks = {}

blocks[1] = {
width: 4, //1 to 12, remove this line if you want to use the default

→˓(4)
title : 'Living room', //if you want change the name of switch different then

→˓domoticz
icon : 'fa-eye', //if you want an other icon instead of the default, choose

→˓from: https://fontawesome.com/icons?d=gallery&m=free
image : 'bulb_off.png', //if you want to show an image instead if icon, place image

→˓in img/ folder
switch : true, //if you want to switch the title and data
hide_data : true, //if you want to hide the data of this block
last_update : true, //if you want to show the last update specific for this

→˓block
playsound : 'sounds/ping.mp3', //play a sound when a device changes
protected : true, //protect switching manually in Dashticz
speak : 'Device status has changed', //speak text when device is changed
gotoslide: 2 //Goto screen when a device changes

};

26 Chapter 3. Configuration

Dashticz Documentation, Release beta

Device with subdevices

If a device consists of several subdevices, like a TempHumBar device or SmartMeter, then for each subdevice a block
will be generated.

In this example device device 659 is a TempHumBar device:

columns[1] = {
blocks: [659]

}

In case I want to show all four subdevices onto one row I’ve to change the default width from 4 to 3:

blocks[659] = {
width:4

}
columns[1] = {

blocks: [659]
}

Now assume I want to have the first 3 subdevices on one row, and the fourth device on a new row, full width, with
some additional customizations:

blocks[659] = {
width:4

}

blocks['659_4'] = {
width:12,
title: 'Dew temperature of device 659',
icon: 'fas fa-bus',
last_update: 'false',
switch: true

}

columns[1] = {
blocks: [659]

}

In the previous example first the settings of ``block[659]`` will be applied to all
→˓subblocks, followed by a subblock if it has been defined.
(In this case ``blocks['659_4']``)

3.2. Blocks 27

Dashticz Documentation, Release beta

In case you only want to show subdevice 1, the column definition should be as follows:

columns[1] = {
blocks: ['659_1']

}

Don’t forget the tick marks around 659_1

As for single device it’s also possible to use a custom block key in combination with the idx parameter.

To make this visible I’ve defined two classes in custom.css:

.css_red {
background-color: red !important;

}

.css_green {
background-color: green !important;

}

Now I’ll add the temperature twice, with different backgrounds:

blocks['659_1'] = {
addClass: 'css_red'

}

blocks['another'] = {
idx: '659_1',
addClass: 'css_green'

}

columns[1] = {
blocks: ['659_1', 'another']

}

You can also change a subdevice of a block with custom key:

blocks['another'] = { //This block will show domoticz device 659
idx: 659,
addClass: 'css_red'

}

(continues on next page)

28 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

blocks['another_1'] = { //This block will be applied to subdevice 1 of "another"
addClass: 'css_green'

}

columns[1] = {
blocks: ['another']

}

Thermostat devices

For a thermostat IDX, IDX_1 or IDX_2 can be used. If IDX_1 is used the thermostat +/- buttons will not be shown. If
IDX_2 is used the icon/image of the block can be changed as in a normal block.

blocks['123_2'] = {
image: 'toon.png'

}

Usage of popup graph window

With the popup parameter you can configure to open a popup graph window. Example:

blocks[258] = {
title: 'Consumption',
flash: 500,
width: 4,
popup: 'popup_consumption'

}

In this example, the specified popup will use a defined graph called ‘popup_consumption’ instead of the default popup.
This defined graph is then added to the config.js just like a normal graph:

blocks['popup_consumption'] = {
title: 'Energy Consumption Popup',
devices: [258],
toolTipStyle: true,
datasetColors: ['red', 'yellow'],
graph: 'line',
legend: {

'v_258' : 'Usage',
'c_258' : 'Total'

}
}

3.2. Blocks 29

Dashticz Documentation, Release beta

Usage of popup multi block window

With the popup parameter you can also configure to open a popup multi block window. Example:

blocks['your_block'] = {
popup: 'container',
...

}

blocks['container'] = {
blocks: ['one1', 'two2'] // where 'one1' and 'two2' are other blocks

}

Usage of openpopup(On)(Off)

With the openpopup, openpopupOn and openpopupOff parameter you can configure to open a popup window when
the device changes. Example:

blocks[123]['openpopup'] = {
url: 'http://www.urltocamera.nl/image.jpg', //Open a popup window with this url

→˓when the device changes
framewidth:500, //specific width of the frame
frameheight:400, //specific height of the frame
auto_close: 5 //auto close the popup window after

→˓5 seconds.
}

blocks[123]['openpopupOn'] = {
url: 'http://www.urltocamera.nl/image.jpg', //Open a popup window with this url

→˓when the device changes to On
framewidth:500, //specific width of the frame
frameheight:400, //specific height of the frame
auto_close: 5 //auto close the popup window after

→˓5 seconds.
}

blocks[123]['openpopupOff'] = {
url: 'http://www.urltocamera.nl/image.jpg', //Open a popup window with this url

→˓when the device changes to Off
framewidth:500, //specific width of the frame
frameheight:400, //specific height of the frame
auto_close: 5 //auto close the popup window after

→˓5 seconds.
}

To remove the close button of the block-popup add the following text to custom.css:

.frameclose { display: none; }

Flash on change

To control the flashing of the block when it’s value change you can set the flash parameter. Via the style
blockchange in custom.css you can set the class-style that needs to be applied.

Example CONFIG.js:

30 Chapter 3. Configuration

Dashticz Documentation, Release beta

blocks[123] = { //123 is the Domoticz device ID
title: 'My new device',
flash: 500 //flash effect of 500 ms

}

Example custom.css (only needed in case you want to change the default flash effect):

.blockchange {
background-color: #0f0 !important;

}

Evohome

The following config parameters from CONFIG.js are applicable:

Parameter Description
evohome_status 'Auto':
evohome_boost_zone<number>: Zone boost temporary override time in minutes. Default: 60
evohome_boost_hw<number>: Hot water boost temporary override time in minutes. Default: 15

The EvoHome devices can be represented as dial by adding type: 'dial' to the block definition. See Dial

3.2. Blocks 31

Dashticz Documentation, Release beta

Formatting

You can define the default unit text and number of decimals to show for some (most?) blocks by adding the following
to CONFIG.js:

config['units'] = {
names: {
kwh: 'kWh',
watt: 'W',
gas: 'm3',
water: 'l',
time: ''

},
decimals: {
kwh: 1,
watt: 0,
gas: 1,
water: 0,
time: 0

}
}

You can also define the unit parameter on block level by setting the unit parameter:

blocks[123] = {
unit: 'Watt'

}

32 Chapter 3. Configuration

Dashticz Documentation, Release beta

RGB Color picker

By setting the block parameter colorpicker to a non-zero value a color picker dropdown button will be added to
a RGB device.

With colorpicker:1 the old style colorpicker will be added:

With colorpicker:2 the enhanced colorpicker will be selected. The colorpicker configuration depends on the
RGB type. The behavior is the same as in Domoticz.

The following Domoticz RGB devices are supported:

• RGB: Plain RGB dimmer

• RGBW: RGB dimmer with white modus

• RGBWW: RGB dimmer with white modus and adjustable white color temperature

• RGBWZ: Dimmer with seperate adjustable levels for RGB and White leds

• RGBWWZ: Adjustable levels for RGB and White, adjustable white color temperature

For Hue RGBWW device add the following block parameter for correct functioning:

mode: 1

Battery level

A battery level indicator will be displayed when the battery level is below a certain threshold.

For battery powerered devices the minimum level is 0, and the maximum level 100. For devices without a battery the
battery level will always be 255.

To display the battery indicator for all battery powered devices set the batteryThreshold to 100:

3.2. Blocks 33

Dashticz Documentation, Release beta

Fig. 1: RGB device

34 Chapter 3. Configuration

Dashticz Documentation, Release beta

Fig. 2: RGBW device in white modus.

3.2. Blocks 35

Dashticz Documentation, Release beta

Fig. 3: RGBWWZ device in Mixed modus.
In this last example you see from left to right the RGB color picker, the RGB color level, the white color temperature, the white

level and the master level.

36 Chapter 3. Configuration

Dashticz Documentation, Release beta

config['batteryThreshold'] = 100;

or configure it for a specific block:

blocks[123] = {
batteryThreshold: 100

}

The following indicators will be displayed:

Min battery level Max battery level icon
0 10% fa-battery-empty
10% 35% fa-battery-quarter
35% 60% fa-battery-half
60% 90% fa-battery-three-quarters
90% 100% fa-battery-full

The battery symbols can be styled in custom.css. As an example the default styling for battery empty:

.battery-level.fa-battery-empty {
color:red;
z-index: 15;

}

To hide the number, add the following to custom.css:

.battery-percentage {
display:none

}

Multiple Values Block

Assuming your device is a P1 smart meter, you can use the following block definition:

blocks['customblock'] = {
idx: '43_1',
title:"Actual: <Usage>",
value: "Today: <NettCounterToday> kWh",
format:true,
decimals: 1

}

Instead of 43 use the Domoticz device ID of your own device.

For as well the title field as the value field of a Domoticz block you can indicate to fill in the value of a Domoticz
device parameter by using the ‘<’ and ‘>’ symbol.

3.2. Blocks 37

Dashticz Documentation, Release beta

For a smart meter device you can use the following device parameters:

• Usage (=Actual power entering your house)

• UsageDeliv (=Actual power leaving your house)

• NettUsage (=Usage - UsageDeliv)

• CounterToday (=Energy entered your house today)

• CounterDelivToday (=Energy left your house today)

• NettCounterToday (=CounterToday - CounterDelivToday)

• Counter (=Total counter of energy that entered your house)

• CounterDeliv (=Total counter of energy that left your house)

• NettCounter (=Counter - CounterDeliv)

All parameter names are case sensitive.

For more fancy computations you can create your custom getStatus function in custom.js

Styling

The following CSS classes will be attached to a Domoticz block automatically:

• on. In case a Domoticz switch is in the On (or closed) state

• off. In case a Domoticz switch is not in the On (or closed) state.

• timeout. In case the Domoticz device is in timeout state.

To give Domoticz blocks with a device in timeout state a red background, add the following to custom.css:

.mh.timeout {
background-color:rgba(255,0,0,0.3);

}

3.2.2 Graphs

If your Domoticz device contains a value (temperature, humidity, power, etc.) then when you click on the block a
popup window will appear showing a graph of the values of the device. These popups can be customized by using the
‘popup’ parameter.

Besides popup graphs it’s also possible to show the graph directly on the dashboard itself.

If you want to show the (undefined) graph of the data of a single device, you can add the graph-id to a column definition
as follows:

//Adding a graph of device 691 to column 2
columns[2]['blocks'] = [

...,
'graph_691', //691 is the device id for which you want to show the graph
...

]

For a defined graph you have to add a block definition to CONFIG.js and add the devices-parameter:

38 Chapter 3. Configuration

Dashticz Documentation, Release beta

blocks['my_graph'] = { //my_graph can be any name you want, as long as you add
→˓'devices' to the block

...,
devices: [691], //691 is the device id
...

}

columns[2]['blocks'] = [
...,'my_graph',...

]

It’s also possible to combine the data from several devices into one graph. In that case you have to add a block
definition to CONFIG.js and add the devices-parameter:

blocks['my_multi_graph'] = { //my_multi_graph can be any name you want, as long as
→˓you add 'devices' to the block

devices: [691, 692] //691 and 692 are the device id's you want to have combined
→˓into one graph
}

columns[2]['blocks'] = [
...,
'my_multi_graph',
...

]

The following block parameters can be used to configure the graph:

Parameter Description
devices an array of the device ids that you want to report on, e.g. for single graph [22] or multigraph [17,

18, 189]
graph

Sets the graph type
'line' Line graph (default)
'bar' Bar graph

graphTypes
Array of values you want to show in the graph. Can be used for Domoticz devices having several
values.
['te']: Temperature
['hu']: Humidity
['ba']: Barometer
['gu', 'sp']: wind guts and speed
['uvi'], ['lux'], ['lux_avg'], ['mm'], ['v_max']
['v2'], ['mm'], ['eu'], ['u'], ['u_max'], ['co2']

Continued on next page

3.2. Blocks 39

Dashticz Documentation, Release beta

Table 3 – continued from previous page
Parameter Description
GroupBy

This allows users to group their data by hour, day, week or month, where applicable ranges are
used. See GroupBy.
The GroupBy function will either:
- The Sum of all values together for that group
- Provide the Average of all values for that group
It identifies what type of sensor it is to apply to appropriate calculation:
- Counter, Rain – uses the Add calculation
- Temperature, Custom Sensor and Percentage – uses the Average calculation

aggregate
In a graph block you can add the parameter ‘aggregate’ which can have the value sum or avg to
define how to compute the aggregation.
sum: show the sum.
avg: shows the average.

groupByDevice
allowing user to show the status of several devices in a single graph. Instead of the data being
group by time intervals, it is grouped by the devices. See groupByDevice.
false: disables the feature (default)
true: enables the feature and display a vertical bar chart, grouped by device
'vertical': is the same as true
'horizontal': enables the feature and display a horizontal bar chart, grouped by device
- Setpoint devices will be displayed as a line infront of the bar graph
- For Evohome devices: The tooltip info will display the status and schedule

labels
An array to rename the device names (groupByDevice charts only)
['Device A', 'Device B'] The first device will be labeled as Device A, the second as
Device B

stacked true: Show stacked bar charts. See stacked.
beginAtZero This forces the Y axis to begin at 0 (zero). The beginAtZero setting can accomodate multiple

Y axes. For example, for a graph with 3 Y axes, you can use: beginAtZero: [true,
false, true] For a graph with a single Y axis, you can use: beginAtZero: true

height '300px': Height of the graph in the graph block
width 6: The width of the block relative to the column width.
displayFormats Object to set the time display format on the x-axis. See Time format on the x-axis.
ylabels To define the y-axes for a custom graph. See Y-axis for custom graphs.
custom Customized graph. See Custom graphs.
interval a time based limiter, to limit time data, e.g. 2 will show 1/2 the time labels, 5 will show 20% of

the time labels (default is 1)
maxTicksLimit specifies how many labels (ticks) to display on the X axis, this does not limit the data in the graph,

e.g. 10 (default is all)
cartesian scales the graph with standard ‘linear’ scale, or ‘logarithmic’, an algorithm to ensure all data can

be seen (default is linear)
Continued on next page

40 Chapter 3. Configuration

Dashticz Documentation, Release beta

Table 3 – continued from previous page
Parameter Description
datasetColors datasetColors: ['Blue','#D3D3D3','rgb(44,130,201)','rgba(44,

130,201,1)'] Use custom colors for the graph lines/bars. Must be html colors, hex code, rgb
or rgba string. See Custom colors.

iconColour colours the graph’s title icons (default is grey)
fontColor font color for the axis ticks and labels (default is white)
lineFill if line graph, this fills the graph, it is an array for each dataset, e.g.[‘true’, ‘false’, ‘true’] (default

is false)
axisRight if true the first Y axis will be shown at the right. (default is false, meaning left)
axisAlternate if true then in case of multiple Y axes they will be shown alternating left/right
borderWidth this is actually the width of the line (default is 2)
borderDash use if you want a dashed line, it takes an array of two values; length of the line and the space, e.g.

[10, 10] (default is off)
borderColors handy for bar graphs, takes an array of colours like datasetColors, e.g. [‘red’, ‘green’, ‘blue’]

(default uses datasetColors)
pointRadius the size of each data point, e.g. 3 (default is 1)
pointStyle an array of the shape of each point, such as circle|cross|dash|line|rect|star|triangle,

e.g.[‘star’,’triangle’] (default is circle)
pointFillColor an array containing the colour of each point, e.g. [‘red’, ‘green’, ‘blue’] (default uses datasetCol-

ors)
pointBorderColoran array containing the border colour of each point, e.g. [‘red’, ‘green’, ‘blue’] (default is light

grey)
pointBorderWidththe thickness of the point border, e.g. 2 (default is 0)
barWidth if a bar graph, this is the width of each bar, 0-1, e.g. 0.5 is half bar, half gap (default is 0.9)
reverseTime use this if you want to reverse your X axis, i.e. setting ‘true’ would mean the time will be reversed

(default is false)
lineTension sets the bezier curve the line is, 0 is straight, 1 is extremely curved! e.g. 0.4 gives a nice bendy

line (default is 0.1)
drawOrderLast an array stating the order in which each dataset should be added to the graph for “last hours”, e.g.

[‘v_idx2’, ‘v_idx1’]
drawOrderDay an array stating the order in which each dataset should be added to the graph for “today”, e.g.

[‘v_idx3’, ‘v_idx1’, ‘v_idx2’]
drawOrderMonthan array stating the order in which each dataset should be added to the graph for “last month”, e.g.

[‘v_idx1’, ‘v_idx2’, ‘c_idx1’, ‘c_idx2’]
buttonsBorder color of the buttons border, e.g. ‘red’, default is ‘white’
buttonsColor color of the buttons text, e.g. ‘#fff’ or ‘white’, default is ‘black’
buttonsFill color of the buttons background colour, e.g ‘#000’ or ‘black’, default is ‘white’
buttonsIcon color of the buttons icon, e.g. ‘blue’, default is ‘grey’
buttonsMarginX gap (or margin) between the buttons (left and right), e.g. 5, default is 2
buttonsMarginY gap (or margin) above and below the buttons, e.g. 5, default is 0
buttonsPadX padding inside the buttons (left and right), e.g. 10, default is 6
buttonsPadY padding inside the buttons, top and bottom, e.g. 5, default is 2
buttonsRadius the curveture of the corners of the buttons, e.g. 10, default is 4
buttonsShadow the shadow below the button in RGBA format (last number is opacity), e.g. ‘rgba(0,0,0,0.5)’,

default is off
buttonsSize the size of the button, e.g. 12, default is 14
buttonsText change the text displayed on each button in an array, e.g. [‘Now’, ‘Today’, ‘Month’], default is

what you see today
gradients an array of arrays, e.g. gradients: [[‘white, ‘blue’], [‘orange’, ‘powderblue’]], default disabled
gradientHeight a number showing the height of the gradient split, e.g. 0.8, default 1

Continued on next page

3.2. Blocks 41

Dashticz Documentation, Release beta

Table 3 – continued from previous page
Parameter Description
spanGaps If true, lines will be drawn between points with no or null data. If false, points with NaN data will

create a break in the line.
sortDevices the code automatically calculate if any devices’ time data is longer than others. It then use that

device’s time data, then match all of the devices non-time data to that. This setting allows users to
choose to enable or disable that feature (true or false)

steppedLine
defines the interpolation method. It can be a single value 'before', or an array of values
['before', false, false] | false (default) No stepped line but interpolation | true
The line steps just before the new value | 'before' The line steps just before the new value
(same as true) | 'after' The line steps just after the new value | 'middle' The line steps
between the old and the new value

customHeader customHeader: { ... } Customized graph header. See customHeader.
format

false (default). Show the value in the graph header as reported by Dashticz. | true. Format
the graph header value using the decimals parameter and the config settings
_THOUSAND_SEPARATOR and _DECIMAL_POINT. See Number format

decimals <number>. Number of decimals to use in tooltip value, and header value (in case format is
true)

popup popup: 'popup_graph' Defined Popups. See Defined Popups.
tooltiptotal Display graph tooltiptotal instead of the standard one. true, false or an array, e.g.

tooltiptotal: ['Office (Temp)', 'Lounge (Temp)'], See tooltiptotal.
zoom

Allows graph zoom controls and orientation. See Zoom.
'x': allow zooming on the x axis (left to right)
'y': allow zooming on the y axis (top to bottom)
'xy': allow zooming in any direction
'false': disable zooming, do not show zoom button

debugButton:
true

Users can now debug their graph by setting their graph’s block config, e.g. debugButton:
true. See Debug.

We will show the possibilities by showing a:

• Simple energy device (Solar panel)

• Climate device (temperature, humidity, barometer)

• P1 Smart Meter

Simple energy device

The solar panel device has device id 6. First we add it to a column without any additional configuration parameters, to
show the default result:

columns[2]['blocks'] = [
6

]

42 Chapter 3. Configuration

Dashticz Documentation, Release beta

As you see three buttons are generated (actual power, energy today, total energy). I only want to have one button, so I
change my column definition to:

columns[2]['blocks'] = [
'6_1'

]

By pressing the button the following graphs pops up:

So, nothing special. Only the red line color is maybe a bit too much. Let’s change it into a yellow bar graph. We have
to add a block definition:

blocks['graph_6'] = {
devices: [6],
graph: 'bar',
datasetColors: ['yellow']

}

3.2. Blocks 43

Dashticz Documentation, Release beta

Now I want to add a legend at the bottom:

blocks['graph_6'] = {
devices: [6],
graph: 'bar',
datasetColors: ['yellow'],
legend: true

}

44 Chapter 3. Configuration

Dashticz Documentation, Release beta

As you can see the data points are labeled as ‘V’. This name is generated by Domoticz. We can translate the Domoticz
name in something else, by extending the legend parameter

blocks['graph_6'] = {
devices: [6],
graph: 'bar',
datasetColors: ['yellow'],
legend: {

'v': 'Power generation'
}

}

legend is an object consisting of key-value pairs for the translation from Domoticz names to custom names.

After pressing the ‘Month’ button on the popup graph:

3.2. Blocks 45

Dashticz Documentation, Release beta

Climate device

First let’s add a climate device with Domoticz ID 659 to a column:

columns[3]['blocks'] = [
'graph_659'

]

This will show the graph directly on the Dashticz dashboard:

46 Chapter 3. Configuration

Dashticz Documentation, Release beta

As you can see the climate device has three subdevices (temperature, humidity, pressure). Since these are different
properties three Y axes are being created.

If you prefer to only see the temperature and humidity add a block definition:

blocks['graph_659'] = {
devices: [659],
graphTypes : ['te', 'hu'],
legend: true

}

3.2. Blocks 47

Dashticz Documentation, Release beta

Of course you can add a legend as well. See the previous section for an example.

P1 smart meter

First let’s show the default P1 smart meter graph:

48 Chapter 3. Configuration

Dashticz Documentation, Release beta

You see a lot of lines. What do they mean? Let’s add a legend

blocks['graph_43'] = {
devices: [43],
legend: true

}

This gives:

3.2. Blocks 49

Dashticz Documentation, Release beta

That doesn’t tell too much. However, this are the value names as provided by Domoticz. Now you have to know that
a P1 power meter has 4 values:

• Power usage tariff 1

• Power usage tariff 2

• Power delivery tariff 1

• Power delivery tariff 2

The first two represent the energy that flows into your house. The last two represent the energy that your house delivers
back to the grid.

So we can add a more meaningful legend as follows:

blocks['graph_43'] = {
devices: [43],
legend: {

v_43: "Usage 1",
v2_43: "Usage 2",
r1_43: "Return 1",
r2_43: "Return 2"

}

Resulting in:

50 Chapter 3. Configuration

Dashticz Documentation, Release beta

However what I would like to see is:

• The sum of Usage 1 and Usage 2

• The sum of Return 1 and Return 2, but then negative

• A line to show the nett energy usage: Usage 1 + Usage 2 - Return 1 - Return 2

• The usage and return data should be presented as bars. The nett energy as a line.

Can we do that? Yes, with custom graphs!

Custom graphs

I use the P1 smart meter as an example again to demonstrate how to create custom graphs. First the code and result.
The explanation will follow after that:

blocks['graph_43'] = {
title: 'My Power',
devices: [43],
graph: ['line','bar','bar'],
custom : {

"last day": {
range: 'day',
filter: '24 hours',
data: {

nett: 'd.v_43+d.v2_43-d.r1_43-d.r2_43',
usage: 'd.v_43+d.v2_43',
generation: '-d.r1_43-d.r2_43'

}

(continues on next page)

3.2. Blocks 51

Dashticz Documentation, Release beta

(continued from previous page)

},
"last 2 weeks": {

range: 'month',
filter: '14 days',
data: {

nett: 'd.v_43+d.v2_43-d.r1_43-d.r2_43',
usage: 'd.v_43+d.v2_43',
generation: '-d.r1_43-d.r2_43'

}
},
"last 6 months": {

range: 'year',
filter: '6 months',
data: {

nett: 'd.v_43+d.v2_43-d.r1_43-d.r2_43',
usage: 'd.v_43+d.v2_43',
generation: '-d.r1_43-d.r2_43'

}
}

},
legend: true,
datasetColors:['blue','red','yellow']

}

This will give:

As you can see, the graph has

52 Chapter 3. Configuration

Dashticz Documentation, Release beta

• title, set via the title parameter

• devices, set via the devices parameter

• custom colors, defined by the parameter datasetColors

• The graph parameter is used to define the graph types. This time it’s an array, because we want to select the
graph type per value.

• legend set to true, to show a default legend

• custom buttons, defined by the custom parameter

A custom object start with the name of the button. The button should contain the following three parameters:

• range. This is the name of the range as requested from Domoticz, and can be 'day', 'today', 'month'
or 'year'. The range 'today' filters the data to today, independent of the setting in Domoticz, and sets the
graph x-axis to the full day.

• filter (optional). This limits the amount of data to the period as defined by this parameter. Examples: '2
hours', '4 days', '3 months'

• data. This is an object that defines the values to use for the graph.

• buttonIcon (optional). The Fontawesome icon to use for the button. Example 'fas fa-bus'

As you can see in the example the first value will have the name ‘nett’. The formula to compute the value is:

'd.v_idx+d.v2_idx-d.r1_idx-d.r2_idx'

The d object contains the data as delivered by Domoticz. As you maybe remember from a previous example Domoticz
provides the two power usage values (v_idx and v2_idx) and the two power return values (r1_idx and r2_idx).

So the first part sums the two power usage values (d.v_idx+d.v2_idx) and the last parts substracts the two return
values (-d.r1_idx-d.r2_idx),

The two other value-names in the data object (usage and generation) will compute the sum of the power usage values
and the power return values respectively.

Maybe a bit complex in the beginning, but the Dashticz forum is not far away.

Below another example to adapt the reported values of a watermeter to liters:

blocks['graph_903'] = {
graph: 'bar',
devices: [903],
datasetColors: ['lightblue'],
legend: true,
custom : {

"last hours": {
range: 'day',
filter: '6 hours',
data: {

liter: 'd.v_903*100' }
},

"today": {
range: 'day',
filter: '12 hours',
data: {

liter: 'd.v_903*100' }
},

(continues on next page)

3.2. Blocks 53

Dashticz Documentation, Release beta

(continued from previous page)

"last week": {
range: 'month',
filter: '7 days',
data: {

liter: 'd.v_903*1000' }
}

}
}

Time format on the x-axis

The chart module uses moments.js for displaying the times and dates. The locale will be set via the Domoticz setting
for the calendar language:

config['calendarlanguage'] = 'nl_NL';

To set the time (or date) format for the x-axis add the displayFormats parameter to the block definition:

blocks['graph_6'] = {
devices: [6],
displayFormats : {

minute: 'h:mm a',
hour: 'hA',
day: 'MMM D',
week: 'll',

(continues on next page)

54 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

month: 'MMM D',
},

}

The previous example sets the time formats to UK style. See https://www.chartjs.org/docs/latest/axes/cartesian/time.
html#display-formats for time/date formats.

Modifying the y-axes

You can modify the y-axes by setting the options parameter. Below you see an example how to define the min and
max values of two y-axes:

blocks['graph_659'] = {
devices: [659],
graph: 'line',
graphTypes: ['te', 'hu'],
options: {

scales: {
yAxes: [{

ticks: {
min: 0,
max: 30

}
}, {

ticks: {
min: 50,
max: 100

}
}]

}
}

}

The yAxes parameter in the options block is an array, with an entry for each y-axis.

Y-axis for custom graphs

To define the y-axes for a custom graph you can add the ylabels parameter as follows:

blocks['graph_659'] = {
devices: [659],
custom: {

'The Temp': {
ylabels: ['yaxis of temp'],
data: {

'temp value': 'd.te_659'
},
range: 'day',
filter: '2 days',
legend: true

}
},
width: 6

}

3.2. Blocks 55

https://www.chartjs.org/docs/latest/axes/cartesian/time.html#display-formats
https://www.chartjs.org/docs/latest/axes/cartesian/time.html#display-formats

Dashticz Documentation, Release beta

The parameter ylabels is an array. You can add a string for each value of the data object.

Custom colors

Custom colors can be defined by the parameter datasetColors:

datasetColors: ['red', 'yellow', 'blue', 'orange', 'green', 'purple']

Optional: If you want to use custom color names you have to set the variable dataset colors to html colors, hex code,
rgb or rgba string:

datasetColors: [colourBlueLight, colourLightGrey, colourBlue]

var colourBlueLight= 'rgba(44, 130, 201, 1)'; // rgba
var colourLightGrey= '#D3D3D3'; // hex code
var colourBlue= 'Blue'; // html color

Custom button styling

blocks['multigraph_1'] = {
...
buttonsPadX: 10,
buttonsPadY: 10,
buttonsBorder: 'red',
buttonsColor: '#fff',
buttonsFill: '#000',
buttonsIcon: 'red',
buttonsMarginX: 5,
buttonsMarginY: 5,
buttonsRadius: 20,
buttonsShadow: 'rgba(255, 255, 255, 0.1)',

(continues on next page)

56 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

buttonsSize: 12,
...

}

Custom point styling

var hot = new Image();
hot.src = "img/hot.png"
var cold = new Image();
cold.src = "img/cold.png"

blocks['multigraph_2'] = {
...
pointStyle: [cold, hot],
...
}

3.2. Blocks 57

Dashticz Documentation, Release beta

customHeader

The parameter customheader can be a:

• string

• function

• object

Examples for each type are presented below.

Example of graph showing long data values in header:

We can now update the block with the customHeader object as shown below:

blocks['bathroom_wetroom'] = {
title: 'Bathroom vs Wetroom',
devices: [12, 13],
customHeader: {

12: 'data.split(",").slice(0,2)', <---- update/
→˓format the data for idx 12

13: 'data.split(",").slice(0,2)', <---- update/
→˓format the data for idx 13

x: '(data.12-data.13).toFixed(2) + " C"', <---- append
→˓custom data based on idx 12 and idx 13

},
tooltiptotal: true,
graph: "line",

(continues on next page)

58 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

legend: true
}

The object accepts key value pairs. Standard Javascript or Jquery code can be used, where ‘data’ is the data you want
to change.

• To format/update the data being displayed by a device, use the idx (number) as the key.

• To add a new ‘custom value’ that is a calculation of existing device data, use any letter as the key.

Using the updated block (above), the graph now displays like this (below). The unwanted data has been removed, and
a new value (the delta between the 2 devices), “1.0 C”, has been added:

In case customHeader is a string, string will be evaluated, and the result added to the graph title:

customHeader: '"Usage: " + devices[6].Usage + "Delivery: " + devices[6].CurrentDeliv'

The Domoticz devices can be accessed via devices[idx], as you can see in the previous example.

In case the formatting and/or computation is more complex, you can define customHeader as function:

customHeader : function(graph) {
var devices = Domoticz.getAllDevices();
var solarGeneration = devices[6].Usage;
var inflow = devices[43].Usage;
var outflow = devices[43].UsageDeliv;
var nett = inflow + solarGeneration - outflow;
return "Nett: " + nett + " Watt";

},

Custom data

blocks['multigraph_72'] = {
title: 'Outside vs Inside Temp',
devices: [72, 152],
graph: 'line',
buttonsBorder: '#ccc',
buttonsColor: '#ccc',
buttonsFill: 'transparent',
buttonsIcon: 'Blue',
buttonsPadX: 10,
buttonsPadY: 5,
buttonsMarginX: 5,
buttonsMarginY: 2,
buttonsRadius: 0,
buttonsShadow: 'rgba(2, 117, 216, 0.2)',
buttonsSize: 12,

custom : {
"Last hours": {

range: 'day',
filter: '6 hours',

(continues on next page)

3.2. Blocks 59

Dashticz Documentation, Release beta

(continued from previous page)

data: {
te_72: 'd.te_72',
te_152: 'd.te_152',
delta: 'd.te_152-d.te_72'

},
},
"Last 2 weeks": {

range: 'month',
filter: '14 days',
data: {

te_72: 'd.te_72',
te_152: 'd.te_152',
delta: 'd.te_152-d.te_72'

}
},
"Last 6 months": {

range: 'year',
filter: '6 months',
data: {

te_72: 'd.te_72',
te_152: 'd.te_152',
delta: 'd.te_152-d.te_72'

}
}

},
legend: {

'te_72': 'Outside',
'te_152': 'Inside',
'delta': 'Difference'

}
}

60 Chapter 3. Configuration

Dashticz Documentation, Release beta

Zoom

The zoom parameter can be set on the graph block as follows:

blocks['wind'] = {
title: 'Wind',
devices: [73],
graph: 'line',
zoom: 'xy',
legend: {

'di_73' : 'Direction',
'sp_73' : 'Speed',
'gu_73' : 'Gust'

}
}

The “Wind” graph before zoom “x”:

The “Wind” graph after zoom “x”:

3.2. Blocks 61

Dashticz Documentation, Release beta

GroupBy

The GroupBy parameter can be set on the graph block as follows:

blocks['group_by_solar'] = {
title: ‘Solar',
devices: [1],
graph: ['bar'],
graphTypes: ['v'],
groupBy: ‘week’,
legend: true

}

Alternatively, the param can be applied to custom data as follows:

blocks['group_by_solar'] = {
title: 'Grouped: Solar',
devices: [1],
graph: ['bar'],
graphTypes: ['v'],
custom : {

"Day by Hour": {
range: 'last',
groupBy: 'hour',
filter: '24 hours',
data: {

Solar: 'd.v_1'
},

},
"Week by Day": {

range: 'month',
groupBy: 'day',
filter: '7 days',
data: {

Solar: 'd.v_1',
(continues on next page)

62 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

}
},
"Month by Week": {

range: 'month',
groupBy: 'week',
data: {

Solar: 'd.v_1',
}

},
"Year by Month": {

range: 'year',
groupBy: 'month',
data: {

Solar: 'd.v_1',
}

}
},
datasetColors: ['green'],
legend: true

}

This results in the “Solar” graph grouping its data by hour, day, week or month - Week by Day is shown in the image
below:

You can use the block parameter ‘aggregate’ to set the aggregation method as ‘sum’ or ‘avg’ (for average).

Instead of a single string the parameter ‘aggregate’ can also be an array of strings, like

aggregate: ['sum','avg'],

This can be useful in case of a custom graph, showing gas usage and temperature in one graph, because in that situation
two different aggregation methods are required.

3.2. Blocks 63

Dashticz Documentation, Release beta

groupByDevice

The block parameter groupByDevice is showing the live status of several devices in a single graph. Instead of the data
being grouped by time intervals, it is grouped by the devices. Note, unlike other graphs, this type of graph does not
report on historic data. I.e. there are no ‘last’, ‘today’, ‘month’ buttons.

blocks['server_status'] = {
title: 'Server Status',
devices: [17, 18, 189, 190, 192],
groupByDevice: true,
beginAtZero: true

}

The feature works with device sensors such as counter, percentage and temperature.

With temperature sensors that have setpoints, it calculates whether the device is:

• Cold - blue

• At setpoint - orange

• Hot - red

• It will show a line displaying the SetPoint values in front of the bar graph for thermostat devices that have
SetPoint data.

• The tooltip will show the status and schedule with EvoHome devices.

• The block datasetColors parameter can now be used to set the colors for ‘below temp’, ‘at temp’, ‘above temp’
and ‘setpoint’ (in that order).

The office and kitchen rooms are showing red, as the temperature is above the setpoint . . .

64 Chapter 3. Configuration

Dashticz Documentation, Release beta

Setting groupByDevice to ‘horizontal’ shows like this . . .

blocks['all_zones'] = {
title: 'Room Temperatures',
devices: [6, 11, 12, 8, 14, 9, 15, 235, 10, 13],
groupByDevice: 'horizontal',
beginAtZero: true

}

3.2. Blocks 65

Dashticz Documentation, Release beta

stacked

With stacked: true parameter graph bars wil be stacked. To show the total value of the stacked bars on the tooltip you
have to add tooltiptotal: true to the graph block.

blocks['group_by_solar_vs_grid'] = {
title: 'Consumption vs Generation',
devices: [258,1],
graph: 'bar',
stacked: true,
graphTypes: ['v'],
tooltiptotal: true,
debugButton: true,
custom : {
"Last Day": {

range: 'last',
groupBy: 'hour',
filter: '24 hours',

data: {
Generation: 'd.v_1',
Consumption: 'd.v_258*-1'

},
},
"Last Week": {

range: 'month',
groupBy: 'day',
filter: '7 days',

data: {
Generation: 'd.v_1',
Consumption: 'd.v_258*-1'

},
},
"Last Month": {

range: 'month',
groupBy: 'week',

data: {
Generation: 'd.v_1',
Consumption: 'd.v_258*-1'

},
}
},
lineTension: 0.5,
datasetColors: ['green', 'red']

}

66 Chapter 3. Configuration

Dashticz Documentation, Release beta

tooltiptotal

tooltiptotal: false

3.2. Blocks 67

Dashticz Documentation, Release beta

tooltiptotal: true

tooltiptotal: ['Confirmed (Total)', 'Deaths (Total)']

68 Chapter 3. Configuration

Dashticz Documentation, Release beta

Basically, if you specify an array, it will only total those datasets, and ignore the other ones. Anything that is being
totalled will show a “+” icon.

Defined Popups

Popups can be defined by adding a new block parameter, “popup”, to the block that popup is for. This allows the
popup to use all the block parameters that a graph block does, allowing them to style the graph however they want. It
also means the legend and tooltips can display custom names (instead of the key names). For example, the user has an
Energy meter block defined as follows:

blocks[258] = {
title: 'Consumption',
flash: 500,
width: 4,
popup: 'popup_consumption'

}

In this example, they have specified that the popup will use a defined graph called ‘popup_consumption’ instead of the
default popup. This defined graph is then added to the config.js just like a normal graph:

blocks['popup_consumption'] = {
title: 'Energy Consumption Popup',
devices: [258],
toolTipStyle: true,
datasetColors: ['red', 'yellow'],
graph: 'line',
legend: {
'v_258' : 'Usage',

(continues on next page)

3.2. Blocks 69

Dashticz Documentation, Release beta

(continued from previous page)

'c_258' : 'Total'
}

}

Examples

Combine two temperature devices with the switch info indicating central heating is on

blocks['switchgraph'] = {
devices: [

31,
27,
17,

],
debugButton: true,
zoom: true,
graph: 'line',
legend : {

l_17: 'CV On',
te_31: 'Return temp',
te_27: 'Room temp'

},
lineFill: [true, false, false],
datasetColors: ['rgba(44,130,201,0.5)', 'red', 'blue'],

}

CPU, Memory & HDD

blocks['multigraph_17'] = {
title: 'CPU, Memory & HDD',
devices: [17, 18, 189],
datasetColors: ['Red', 'Orange', 'Blue', 'Green', 'LightBlue', 'Aqua', 'Yellow

→˓', 'Purple', 'Pink'],

(continues on next page)

70 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

legend: true,
cartesian : 'linear',
graph: 'line',
lineFill: true,
drawOrderDay: ['v_17', 'v_189', 'v_18'],
drawOrderMonth: ['v_min_17', 'v_avg_17', 'v_min_18', 'v_max_17', 'v_avg_189',

→˓'v_max_189', 'v_min_189', 'v_avg_18', 'v_max_18'],
legend: {

'v_17' : 'CPU',
'v_avg_17' : 'CPU avg',
'v_max_17' : 'CPU max',
'v_min_17' : 'CPU min',
'v_18' : 'MEM',
'v_avg_18' : 'MEM avg',
'v_max_18' : 'MEM max',
'v_min_18' : 'MEM min',
'v_189' : 'HDD',
'v_avg_189' : 'HDD avg',
'v_max_189' : 'HDD max',
'v_min_189' : 'HDD min'

}
}

Grid vs Solar

Due to the low solar output in winter months, comparing solar to grid was often hard to read. The graph needed to
be updated to use a logarithmic scale, i.e. a nonlinear scale useful when analysing data with large ranges. The solar
device stops recording data at the usual 5 minute intervals when it gets dark. The code inserts intervals (with a value
of 0.00) when no data is recorded. In the updated multigraph block below, the cartesian property is used, and three
drawOrder properties.

blocks['multigraph_1'] = {
title: 'Grid vs Solar',
devices: [162, 1],
datasetColors: ['Red', 'Green'],

(continues on next page)

3.2. Blocks 71

Dashticz Documentation, Release beta

(continued from previous page)

lineFill: [true, true],
graph: 'line',
cartesian: 'logarithmic',
drawOrderLast: ['v_1', 'v_162'],
drawOrderDay: ['v_1', 'v_162'],
drawOrderMonth: ['v_162', 'v_1', 'c_162', 'c_1'],
legend: {

'v_162': 'Grid',
'v_1': 'Solar',
'c_162': 'Solar Cumulative',
'c_1': 'Solar Cumulative'

}
}

This is using the standard linear scale (i.e. cartesian = linear):

This is using the new logarithmic scale (i.e. cartesian = logarithmic). Note the y axis labelling on the left:

72 Chapter 3. Configuration

Dashticz Documentation, Release beta

Outside vs Inside Temp

The indoor temp sensor also includes barometric pressure (ba) and humidity (hu), but the outside one is only tem-
perature. In the graph below, the graphTypes property is used to remove the extra unwanted data. Now only the
temperature is directly compared.

blocks['multigraph_72'] = {
title: 'Outside vs Inside Temp',
devices: [72, 152],
datasetColors: ['LightBlue', 'LightGrey', 'Blue', 'Orange', 'Red', 'Yellow'],
graphTypes: ['te','ta','tm'],
graph: 'line',
legend: {

'te_72': 'Outside (max)',
'ta_72': 'Outside (avg)',
'tm_72': 'Outside (min)',
'te_152': 'Inside (max)',
'ta_152': 'Inside (avg)',
'tm_152': 'Inside (min)'

}
}

3.2. Blocks 73

Dashticz Documentation, Release beta

Temperature and Setpoint

Three thermostat devices (Evohome TRVs), each showing their temperature and setpoint.:

blocks['evohome_graphs'] = {
title: 'Lounge, Kitchen, Hall Thermostats',
devices: [11, 12, 152],
interval: 2,
maxTicksLimit: 12,
datasetColors: ['LightGrey', 'Red', 'Green', 'DarkGreen', 'Blue'],
buttonsIcon: 'Purple',
graph: 'line',
lineTension: 0,
borderWidth: 2,
spanGaps: false,
graphTypes: ['te', 'se'],
buttonsBorder: '#ccc',
buttonsColor: '#ccc',
buttonsFill: 'transparent',
buttonsIcon: 'Blue',
buttonsPadX: 10,
buttonsPadY: 5,
buttonsMarginX: 5,
buttonsMarginY: 2,
buttonsRadius: 0,
buttonsShadow: 'rgba(2, 117, 216, 0.2)',
buttonsSize: 12,
buttonsText: ['6H', '24H', '1M'],
legend: {

'se_11': 'Lounge (SP)',
'sm_11': 'Lounge (SP Min)',
'sx_11': 'Lounge (SP Max)',
'te_11': 'Lounge (TE)',
'ta_11': 'Lounge (TE Avg)',
'tm_11': 'Lounge (TE Min)',
'se_12': 'Kitchen (SP)',
'sm_12': 'Kitchen (SP Min)',

(continues on next page)

74 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

'sx_12': 'Kitchen (SP Max)',
'te_12': 'Kitchen (TE)',
'ta_12': 'Kitchen (TE Avg)',
'tm_12': 'Kitchen (TE Min)',
'se_152': 'Hall (SP)',
'sm_152': 'Hall (SP Min)',
'sx_152': 'Hall (SP Max)',
'te_152': 'Hall (TE)',
'ta_152': 'Hall (TE Avg)',
'tm_152': 'Hall (TE Min)'

}
}

Buttons

Standard buttons:

Updated buttons (one of many styles):

More Examples

This graph includes 2 separate temperature sensors, with gradients, custom points (images) and button styling:

3.2. Blocks 75

Dashticz Documentation, Release beta

This graph includes 3 separate percentage sensors, custom points (images) and button styling:

This graph includes 2 separate energy sensors, subtle gradients, no points and uses the logarithmic scale:

76 Chapter 3. Configuration

Dashticz Documentation, Release beta

This graph includes 2 separate counter sensors, without gradients, but with custom points (images) and button styling:

This graph uses 2 temperature sensors and custom data, calculating a 3rd virtual dataset, showing the difference
between the outside temperature and the inside temperature:

3.2. Blocks 77

Dashticz Documentation, Release beta

Number format

Number formatting is applied to tooltip values and header values.

Number formatting uses two global config parameters:

• _DECIMAL_POINT: Default value is ','

• _THOUSAND_SEPARATOR: Default value is '.'

You can redefine these two config parameters in CONFIG.js:

_DECIMAL_POINT = '.';
_THOUSAND_SEPARATOR = ',';

For header values the formatting is only applied in case the block parameter format is set to true, and the device is
a single value device. For instance, for a TempHumBar device no formatting will be applied to header values. For
header values the default number of decimals is derived from the device type. You can overrule the number of decimals
with the decimals block parameter.

For tooltip values the default number of decimals is the decimals value of the first device, which may be overruled by
the decimals parameter.

The values in a tooltip will always have the same number of decimals.

Styling

For graphs the following css-classes are used:

• .graphheader: The graph header, including title and buttons

• .graphtitle: The title of the graph, including the current value

• .graphbuttons: The buttons for the graph

You can modify the class definition in custom.css. If you want to hide the header:

78 Chapter 3. Configuration

Dashticz Documentation, Release beta

.graphheader {
display: none;

}

You can also modify the class for a specific graph only

[data-id='mygraph'].graph .graphheader {
display: none;

}

In the previous example only the graph created with key ‘mygraph’ will be affected.

To change the default size of the graph popup windows add the following style blocks to your custom.css:

.graphheight {
height: 400px;

}

.graphwidth {
width: 400px;

}

To remove the close button of the graph popup add the following text to custom.css:

.graphclose { display: none; }

To be detailed. . .

.opengraph, .opengraph<idx>p, #opengraph<idx>p //classes attached to the graph
→˓popup dialog
.graphcurrent<idx> //class attached to the div with the current value

For internal use:

block_graph_<idx> //The div to which the graph needs to be attached.
#graphoutput<idx> //The canvas for the graph output

Styling of X- and Y- axes

(advanced customization. . .)

By setting the options block parameter most graph properties can be customized. For instance to change the font
size of the axes, and reduce the width of the graph legend use the following block definition:

blocks['graph_43'] = {
...,
options: {

scales: {
xAxes: [{

ticks: {
fontSize: 7
}

}],
yAxes: [{

ticks: {
fontSize: 7,

(continues on next page)

3.2. Blocks 79

Dashticz Documentation, Release beta

(continued from previous page)

},
scaleLabel: {

fontSize: 7
}

}],
},
legend:{

labels:{
fontSize:10,
boxWidth:10

},
}

}

}

Dashticz uses chartjs version 2.9. Most configuration options can be found via https://www.chartjs.org/docs/2.9.4/, or
post your question in the forum.

Debug

debugButton: true adds a button to the top right of the graph. When pressed, a dialog box is displayed with
key information about each device and the data that has been generated to show the graph. Each device has a link, this
takes you to page showing all data about each device within the graph, using Domoticz api. Across the top shows the
original keys and the new keys (appended with the device idx).

There are 3 buttons at the top of the debug window:

• DevTools button - press F12 on the keyboard and then click this to show the graph properties in Dev Tools

• Save button - click this to download your graph properties in JSON format. This will be helpful if you need
support.

• Close button - to exit the debug window. Although clicking outside of the window does the same thing.

80 Chapter 3. Configuration

https://www.chartjs.org/docs/2.9.4/

Dashticz Documentation, Release beta

3.2.3 Buttons

Buttons are clickable elements that may show an image. First you have to define the button in CONFIG.js:

buttons = {} //only once!!
buttons.yr = {

width: 12,
isimage: true,
refresh: 60,
btnimage: 'https://www.yr.no/sted/Norge/Oppland/%C3%98ystre_Slidre/Beito/advanced_

→˓meteogram.png',
url: 'https://www.yr.no/sted/Norge/Oppland/%C3%98ystre_Slidre/Beito/

→˓langtidsvarsel.html'
};

// Then add the button to a specific column:
var columns = {} //This line only once!!
columns['3'] = {

blocks: [
...,
buttons.yr,
...

],
width: 1

}

3.2. Blocks 81

Dashticz Documentation, Release beta

Parameters

Parameter Description
width 1..12: The width of the block relative to the column width
title '<string>': Custom title for the block
key 'key': unique identifier.
slide 1..99: Slide to specified screen on click.
isimage Set to true if the image should be shown in the full button width (default false).
icon 'fas fa-icon': icon to show in the button.
image 'image.png': image to show as icon the button. Image path is relative to the <dashticz>/img

folder.
btnimage '<url>': URL of the image to show in the button.
refresh 1..99999: Refresh time of the button image in seconds. There is no maximum. The default is

60 (=1 minute).
url '<url>': URL of the page to open in a popup window on click.
popup 'mypopup': Opens the ‘mypopup’ block in a new window on click.
forceheight

Set the height of the image in a button
'200px': Set image height to 200px.

framewidth '<integer>': specific width of the popup window on click.
frameheight '<integer>': specific height of the popup window on click.
forcerefresh

Control the caching-prevention mechanism of the images and popup frame for a button.
0 : Normal caching behavior (=default)
1, true : Prevent caching by adding t=<timestamp> parameter to the url as second parameter.
Try this if you have a (cheap Chinese) webcam. Not all webservers will handle this correctly
2 : The image is loaded via php, preventing caching. (php must be enabled on your Dashticz
server)
3 : Prevent caching by adding t=<timestamp> parameter to the end of the url. Not all webservers
will handle this correctly.

refreshiframe

0: No automatic refresh of a button popup frame (default)
1..99999: Refresh time of the button popup frame in sec. There is no maximum. The default
is 60 (=1 minute).

level Domoticz log level used by the log-button.
newwindow

0: open in current window
1: open in new window
2: open in new frame (default, to prevent a breaking change in default behavior)
3: no new window/frame (for intent handling, api calls). HTTP get request.
4: no new window/frame (for intent handling, api calls). HTTP post request. (forcerefresh not
supported)
5: open in a new browser tab

auto_close

Closes the opened window after a certain period of time (only applicable when newwindow is 1,2
or 5)
0: (=Default) No auto close
5: Closes the popup window after 5 seconds.

password

Password protect switches, buttons, thermostats, sliders, blinds
'secret': Password to use

82 Chapter 3. Configuration

Dashticz Documentation, Release beta

Usage

Slide button

If you have added the slide parameter to a button, then Dashtics will slide to the specific screen if the button is
pressed.

If you use a button to slide to specific screen (menu button), then the background color of that button will change if
that specific screen is active.

Example: If screen number 2 is the active screen, then a button with parameter slide:2 will be shown as active.

You can adapt the formatting of the selected button with the class .selectedbutton in your custom.css.
Example:

.selectedbutton {
background-color: #cba !important;

}

Example on how to use menu buttons:

//three buttons are defined
buttons.page1 = { width:12, title:'page 1', slide:1};
buttons.page2 = { width:12, title:'page 2', slide:2};
buttons.page3 = { width:12, title:'page 3', slide:3};

//definition of a menu column
var columns = {} //This line only once!!
columns['menu'] = {

blocks: [buttons.page1, buttons.page2, buttons.page3],
width: 1

}

//Define columns 1 to 6 as well
// ...

//Add the menu column to your screens
var screens = {} //This line only once!
screens[1] = {

columns: ['menu', 1,2]
}
screens[2] = {

columns: ['menu', 3,4]
}
screens[3] = {

columns: ['menu', 5,6]
}

forcerefresh

Control the caching-prevention mechanism of the images for a button.

0 : Normal caching behavior (=default)

1 (or true) : Prevent caching by adding t=<timestamp> parameter to the url. Not all webservers will
handle this correctly

2 : The image is loaded via php, preventing caching. (php must be enabled on your Dashticz server)

3.2. Blocks 83

Dashticz Documentation, Release beta

Examples

Additional examples of button definitions:

var buttons = {}
buttons.buienradar = {width:12, isimage:true, refresh:60, btnimage: 'https://image.
→˓buienradar.nl/2.0/image/animation/RadarMapRainNL?height=300&width=360&extension=gif&
→˓renderBackground=True&renderBranding=False&renderText=True&history=3&forecast=6&
→˓skip=1', url: 'https://www.buienalarm.nl/amsterdam-noord-holland-nederland/52.3727,
→˓4.8936'}
buttons.radio = {width:12, image: 'radio_on.png', title: 'Radio', url: 'http://
→˓nederland.fm'}
buttons.nunl = {width:12, icon: 'far fa-newspaper', title: 'Nu.nl', url: 'http://www.
→˓nu.nl'}
buttons.webcam = {width:12, isimage:true, refresh:2, btnimage: 'http://ip_url_to_
→˓webcam', url: 'http://ip_url_to_webcam', framewidth:500, frameheight:400}

To remove the close button of the button-popup add the following text to custom.css:

.frameclose { display: none; }

3.2.4 Frames

With a frame it’s possible to show (internet) content directly on the Dashticz dashboard.

A frame is defined as follows:

////////////////////// FRAMES ///////////////////////////
var frames = {}
frames.weather = {

frameurl:"//forecast.io/embed/#lat=49.2624&lon=-123.1155&name=Vancouver&color=
→˓#00aaff&font=Helvetica&fontColor=#ffffff&units=si&text-color=#fff&",
height: 250 //height of the block in pixels

}

In the previous example the weather forecast for Vancouver from forecast.io is downloaded.

You can add a frame to a column in the usual way:

//Definition of columns
columns = {}

columns[1] = {
blocks: [frames.weather],
width: 6

}

84 Chapter 3. Configuration

Dashticz Documentation, Release beta

Frame parameters

Parameter Description
frameurl The URL to load in the frame
width 1..12 The width of the frame relative to the column width. 12=100%, 3=25%
heigth Height of the frame in pixels
scrollbars false Scrollbars are never shown (even if they are needed) Default: auto
refresh Refresh interval (in seconds)
forcerefresh

Control the caching-prevention mechanism of the frame content
0 : Normal caching behavior (=default)
1, true : Prevent caching by adding t=<timestamp> parameter to the url. Not all websites will
handle this correctly
2 : The frame content is loaded via php, preventing caching. (php must be enabled on your
Dashticz server)

scaletofit

Width of the frame content in pixels, which will be scaled to the block width.
256 : Assuming the width of the frame content is 256 pixels, then the frame will be scaled in
such a way that the content will fit the block width.

aspectratio The height of the block will be adjusted to a certain aspect ratio, taking scaling via scaletofit
into account.

Example

var config = {}
config['language'] = 'nl_NL'; //or: en_US, de_DE, fr_FR, hu_HU, it_IT, pt_PT, sv_SV
config['domoticz_ip'] = 'http://192.168.178.18:8080'; //Replace with your Domoticz
→˓IP:Portnumber
config['domoticz_refresh'] = '5';
config['dashticz_refresh'] = '60';

config['auto_swipe_back_after'] = '0';

//Definition of blocks
blocks = {}

blocks['weather'] = {
frameurl:"//forecast.io/embed/#lat=49.2624&lon=-123.1155&name=Vancouver&color=

→˓#00aaff&font=Helvetica&fontColor=#ffffff&units=si&text-color=#fff&",
height: 250

}

//Definition of columns
columns = {}

columns[1] = {
blocks: ['weather'],
width: 6

}

(continues on next page)

3.2. Blocks 85

Dashticz Documentation, Release beta

(continued from previous page)

//Definition of screens
screens = {}
screens[1] = {

columns: [1]
}

This will give the following result:

In some cases the frame content doesn’t fit well within the block width. The frame content can be scaled by using the
block parameters scaletofit and aspectratio.

For instance, the buienradar widget has a frame width of 256 pixels, and an aspect ratio of 1:1. That means you can
define the block as follows:

blocks['buien'] = {
frameurl: 'https://gadgets.buienradar.nl/gadget/zoommap/?lat=52.37403&lng=4.88969&

→˓overname=2&zoom=11&naam=amsterdam&size=2&voor=0',
scrollbars: false,
width:12,
scaletofit: 256,
aspectratio: 1,

}

86 Chapter 3. Configuration

Dashticz Documentation, Release beta

In the example above the ‘buien’ block has been added to columns of width 1,2 and 4 respectively.

For other buienradar widgets check the following url: https://www.buienradar.nl/overbuienradar/gratis-weerdata

Look for the iframe examples and copy/paste the content of the ‘src’ parameter to the frameurl of your Dashticz block.

3.2.5 Specials

Alarmmeldingen

This module can display (Dutch) 112 Meldingen.

Define your “alarmmeldingen” block (optional):

blocks['alarmmeldingen'] = {
rss: 'https://alarmeringen.nl/feeds/city/venlo.rss',
filter: 'Venlo', //filter the messages for your town and if you want the

→˓cities around you
show_lastupdate: true,
width: 12,
refresh: 300, //refresh rate in seconds
results: 5 //number of recent results to show

}

Add “alarmmeldingen” to a column:

columns[1]['blocks'] = [
'alarmmeldingen',

Use the site https://alarmeringen.nl to find the rss-feed of your choice (region, city)

3.2. Blocks 87

https://www.buienradar.nl/overbuienradar/gratis-weerdata
https://alarmeringen.nl

Dashticz Documentation, Release beta

Parameters

Parameter Description
title '<string>': Custom title for the block
rss The rss url for your City or Region from https://www.alarmeringen.nl/
filter Add search filters for surrounding cities or special messages mentioned in the alarmmessage like

Traumaheli or Brandweer
show_lastupdatetrue / false: To display the ime of the last update of the data displayed
width The block width
refresh The update interval of this block in seconds
icon The icon to show in the block, if you dont want to show an icon use ‘’
image The image to use instead of an icon. Location is relative to ./img
results The number of most recent results found by using the filter parameter
timeformat Time format template. Default is ‘ddd d MMM HH:MM’ which will display the time as ‘Thu 4

Apr 22:03’.

Usage

Note: Alarmmeldingen requires beta 3.4.0 or higher.

If you want to remove the icon, add the following to your block definition:

icon: '', //This are two tick-marks

To use your own image instead of a FontAwsome Free icon you can add this to your ‘’CONFIG.js””:

image: '../custom/img/siren.png',

For more information on time formats see: https://momentjscom.readthedocs.io/en/latest/moment/04-displaying/
01-format

Styling

To change the color of the alarmmessages add the following to your custom.css:

.alarmrow{
font-size: 14px !important;
}

(continues on next page)

88 Chapter 3. Configuration

https://www.alarmeringen.nl/
https://momentjscom.readthedocs.io/en/latest/moment/04-displaying/01-format
https://momentjscom.readthedocs.io/en/latest/moment/04-displaying/01-format

Dashticz Documentation, Release beta

(continued from previous page)

.alarmrow a {
color: white;
}
.alarmrow strong{
display: inline-block;
}

In case no info is available then the CSS class empty will be added to block.

Blocktitle

A special block type is a block title. You define a block title as follows:

blocks['blocktitle_1'] = { //'blocktitle_1' must be an unique name
type: 'blocktitle', //Set type to 'blocktitle' (required for block title)
title: 'My Devices Block', //The title of the block as shown in the

→˓dashboard.
width: 6, //The width of the block relative to the column width
icon: 'far fa-lightbulb', //If you want to show an icon, choose from: https://

→˓fontawesome.com/icons?d=gallery&m=free
image: 'lightbulb.png' //If you want to show an image instead if icon, place

→˓image in img/ folder
}

3.2. Blocks 89

Dashticz Documentation, Release beta

Block parameters

Parameter Description
width 1..12: The width of the block relative to the column width
title '<string>': Custom title for the block
icon

Defines the icon for this block, choose from: https://fontawesome.com/icons?d=gallery&m=free
'fas fa-eye'

image

If you want to show an image instead of an icon, place image in img/ folder
'bulb_off.png'

type Set this parameter to 'blocktitle'

Note: From 3.7.3 onwards only the ‘new calendar’ block is supported.

New Calendar

You can add a block with upcoming events from your ical-calendar (gmail, apple etc.).

Note: PHP support is required. See system preparation.

Dashticz config settings

The following config settings are applicable:

Parameter Description
calendarformat

Configure the Calendar Date/Time format.
'dd DD.MM HH:mm' = default

calendarlanguage

Controls the calendar locale
'nl' , 'en' , 'hu', etc.

Usage

Google Calendar

You have to know the correct link to your Google Calendar. You can find them as follows:

90 Chapter 3. Configuration

https://fontawesome.com/icons?d=gallery&m=free

Dashticz Documentation, Release beta

• Open https://calendar.google.com/calendar

• Under ‘My calendars’ click on the three dots behind your calendar -> settings and sharing

• In the page that opens look for the following links:

– Public URL to this calendar. It’s something like: https://calendar.google.com/calendar/
embed?src=yourname%40gmail.com&ctz=Europe%2FAmsterdam

Use this public url as url parameter in your calendar block.

– Secret address in ICAL format. It’s something like: https://calendar.google.com/
calendar/ical/yourname%40gmail.com/private-5045b31...........ba/basic.
ics

Use this ical url as icalurl parameter in your calendar block.

The new calendar block follows the same look and feel as most other blocks. It uses type to tell Dashticz that its a
calendar block. The new calendar block can be configured as follows:

blocks['my_calendar'] = {
type: 'calendar',
maxitems: 5,
layout: 0,
url: 'https://calendar.google.com/calendar/embed?src=_REDACTED_&ctz=Europe

→˓%2FLondon',
icalurl: 'https://calendar.google.com/calendar/ical/_REDACTED_/private-

→˓123456789/basic.ics',
holidayurl: 'https://www.calendarlabs.com/ical-calendar/ics/75/UK_Holidays.ics

→˓',
weeks: 5,
lastweek: false,
isoweek: false,
width: 12

}

3.2. Blocks 91

https://calendar.google.com/calendar

Dashticz Documentation, Release beta

Parameter Description
emptytext The text to show in case there are no appointments. Default: 'Geen afspraken'
calFormat The parameter “calFormat” is absolete. The “calFormat” parameter for the new calendar is called

layout
layout

0: Lists an agenda of events in text format
1: Lists an agenda of events in table format
2: Displays a traditional calendar in table format
3: Lists an agenda of all day events in text format (no time is shown)
4: Lists an agenda of all day events in table format (no time is shown)

icalurl This can accept either a single url (string) or one or more calendar objects (example below)
ics Url (string) of the calendar object
color Color of the calendar text. Must be html colors, hex code, rgb or rgba string
url This can be set on the block or in settings[‘calendarurl’]. Whenever you click the calendar block

whilst setting layout 0 or 1, an embedded gmail calendar will display in a popup dialog (modal).
Alternatively, when layout 2 is set, when clicking on any event, it will display a popup with the
event details and provide a link to the calendar (e.g. gmail)

holidayurl This allows users to add public holidays (or other public events) to their calendar
maxitems This limits the number of events that you want to display. When setting layout 2, I set it to 100 to

allow for 35 days. Adjust to your own preference
weeks This is how many weeks, or rows of 7 days, you wish to display when layout 2 is selected
lastweek

Show the previous week and any events from that week
true: Show the previous week
false (=default): Don’t how the previous week

isoweek

The week will start on a Sunday or on a Monday
true: Week will start on a Monday
false (=default): Week will start on a Sunday

icon

Icon name. Example:
'fas fa-car'. To display a car icon in the left column

image

If you want to show an image instead of an icon in the left column. Place image in img/ folder
'calendar.png'

title

A title will be shown above the calendar
'<string>': Title for the block

width 1..12: The width of the block relative to the column width
method

0: ical method 0 (recommended. Default when PHP version < 7.1)
1: ical method 1 (default when PHP version >= 7.1)

dateFormat

String to change the date formatting of a calendar item using moments.js
'dd DD-MM'. This will represent the dates as ‘di 24-9’

timeFormat

String to change the time formatting of a calendar item using moments.js
Examples:
'LT' (=default): This will represent the time in the local time format
'HH:mm'. This will represent the time as ‘23:12’

startonly

Display start time only
false (=default): Display start time and end time
true : Display start time only

fixAllDay

Remove start time for All Day events that are created in a different time zone
false: Show the start time for ‘All Day’-events in case the start time is not 00:00
true: Don’t show the start time for ‘All Day’-events

key

'key': unique identifier. You can use [data-id='calendars.key'] in your
custom.css

eventClasses Object to add a specific CSS class to an event based on the event description. See Event styling

92 Chapter 3. Configuration

Dashticz Documentation, Release beta

Notes

I did not find an ical library that handles all ical files correctly.

ical method 0 has issues with yearly recurring events.

ical method 1 has issues for recurring events with interval more than 1 (for instance biweekly events)

Example of traditional calendar in table format

blocks['gmail_calendars'] = {
type: 'calendar',
layout: 2,
icalurl: {

Personal: {
ics: 'https://calendar.google.com/calendar/ical/_REDACTED_/

→˓private-123456789/basic.ics',
color: 'blue'
},
Business: {

ics: 'https://calendar.google.com/calendar/ical/_REDACTED_/
→˓private-123456789/basic.ics',

color: 'purple'
}

},
holidayurl: 'https://www.calendarlabs.com/ical-calendar/ics/75/UK_Holidays.ics

→˓',
maxitems: 100,
weeks: 5,
lastweek: true,
isoweek: false,
width: 12

}

The layout set to 0 will display this:

The layout set to 1 will display this:

The layout set to 2 will display this:

3.2. Blocks 93

Dashticz Documentation, Release beta

When the user clicks on any events, it opens details about that event. If the event details is already HTML, it will
render the HTML event body, including font, tags, anchors/links, etc. The contents of the popup is scrollable. Also
included in the popup is a link to source calendar (bottom left), if one has been set in config.js. On the bottom right of
the popup, the event location is displayed (if this exists). When clicked, it will take the user to the location on Google
maps.

Example of a birthday calendar

When using layout: 3 or layout: 4 no time will be shown.

94 Chapter 3. Configuration

Dashticz Documentation, Release beta

blocks['birthdays'] = {
type: 'calendar',
layout: 4,
dateFormat: 'D MMMM',
icalurl: 'http://... .../birthdays.ics'
maxitems: 5,
icon: 'fas fa-birthday-cake',

}

Event styling

You can customize the event styling by setting the eventClasses block parameter. As an example block definition:

blocks['f1'] = {
maxitems: 8,
icalurl: 'http://www.f1calendar.com/download/f1-calendar_p1_p2_p3_q_gp_alarm-20.

→˓ics',
layout: 1,
icon: 'fas fa-car',
title: 'Formula 1',
type: 'calendar',
startonly: true,
lastweek: false,
eventClasses: {

important: 'Grand',
normal: 'Qual'

}

}

If the calendar text contains the text ‘Grand’, then the CSS class important will be added to the event element. If
the calendar text contains the text ‘Qual’, then the CSS class normal will be added to the event element.

Add the following to custom.css:

.event.normal {
color: orange !important

}

.event.important {
background-color:yellow;
color: green !important;

}

.description.important {
color: black !important;

}

.eventtime.important {
(continues on next page)

3.2. Blocks 95

Dashticz Documentation, Release beta

(continued from previous page)

color: red !important;
}

By default each event uses the following CSS classes:

• event: Event container

• eventdate: Date part of event

• eventtime: Time part of event

• description: Event description

By combining these classes with the classes assigned via eventClass you can customize the styling, as shown in the
custom.css example above.

Then another trick: The values in the eventClasses object are not just strings, but Regular Expressions. Assume we
define eventClasses as follows:

eventClasses: {
important: '^Grand',
normal: /qual/i

}

The style important will be applied to events that start with ‘Grand’.

The matching of ‘qual’ now is case insensitive.

Block styling

In case no info is available then the CSS class empty will be added to block. This can be used to adjust the styling of
an empty block via custom.css

Cameras

This has been designed mainly for those users with several cameras, which provide both an image stream and a video
stream.

96 Chapter 3. Configuration

Dashticz Documentation, Release beta

1. Each camera can display the title on the top right of the screen and in the tray

2. You can select the left icon to navigate left on the camera carousel

3. You can select the right icon to navigate right on the camera carousel

4. The images in the tray now refresh every n seconds (block refresh parameter)

blocks["cameras"] = {
type: "camera",
cameras: [

{
title: "Taw Hill, West View",
imageUrl: "http://192.168.1.123:4567/videoQW.mjpg?image",
videoUrl: "http://192.168.1.123:4567/videoQW.mjpg?video",

},
{

...
},
{

title: "Hall & Front Door",
imageUrl: "http://192.168.1.123:4567/videoHL.mjpg?image",
videoUrl: "http://192.168.1.123:4567/videoHL.mjpg?video",

},
],
width: 6,
height: 250,
refresh: 0.5,
traytimeout: 3
slidedelay: 3,
forcerefresh: 1,

};

3.2. Blocks 97

Dashticz Documentation, Release beta

Camera parameters

Parameter Description
type camera: indentifies this block as a camera (mandatory)
cameras [...]: optional array to add multiple cameras
imageUrl <url>: this is the url for the static image of the camera
videoUrl <url>: this is the url for the fullscreen live video stream. The videoUrl parameter should only

be set if it is a Motion JPEG (MJPEG) camera stream
title <string>: display the name of the camera in the top right of camera stream
refresh <number>: seconds to refresh the image
traytimeout <number>: seconds to keep the camera tray open (default = 5)
slidedelay <number>: seconds before sliding to the next camera (0 = no slide, default = 3)
forcerefresh 0: caching-prevention mechanism of the images (default = 1) See Buttons

Usage

Example of a single camera block:

blocks['garage_cam'] = {
type: 'camera',
imageUrl: 'http://192.168.1.234:5678?res=640x480&snapshot=1',
videoUrl: 'http://192.168.1.234:5678?res=1920x1080&fps=15',
refresh: 1,
width: 6,
height: 300

}

Camera troubleshooting

There are several challenges with camera’s:

1. Find the right url

2. Solve authorization (username/password)

Finding the right url

For the imageURL parameter Dashticz expects a still image, although a mjpeg video will also work. For the
videoURL parameter Dashticz expects a video in MJPEG format.

If the video URL is not provided, then Dashticz will use the imageURL instead.

For most camera’s the correct URL can be found via the following page:

https://www.ispyconnect.com/

Some cheap camera’s only provide a RTSP link. RTSP is not supported in most browsers, and cannot be displayed via
Dashticz. If you only have a RTSP link you have to use a third-party application for transcoding. See below.

98 Chapter 3. Configuration

https://www.ispyconnect.com/

Dashticz Documentation, Release beta

Solve authorization

Dashticz only supports authorization if the username/password is part of the URL string. (something like http://192.
168.1.20:81/videostream.cgi?user=username&pwd=password&resolution=32&rate=0)

Basic-auth encoded in the ip address is not supported, since this is blocked by most browsers. (http://username:
password@192.168.1.20:81/videostream.cgi?resolution=32&rate=0)

Also Basic-auth by setting the authorization http request header is not supported.

Solve authorization via Domoticz

If your camera provides a jpeg and/or mjpeg url, but requires basic authorization, then you can request the image/video
via Domoticz. Add the camera to Domoticz and use the url for the image/video as provided by Domoticz.

For more info see the Domoticz wiki:

https://www.domoticz.com/wiki/Camera_Setup

Third party video conversion

If your camara only provides a RTSP stream, then the stream needs recoding into JPEG images and a MJPEG video
stream. Users reported success with the following tools:

• Motioneye https://github.com/ccrisan/motioneye/wiki

• Xeoma https://felenasoft.com/xeoma/en/

For Motioneye a Docker image exists, which works very well. Read: https://github.com/ccrisan/motioneye/wiki/
Install-In-Docker

I’m considering to (optionally) add Motioneye to the Dashticz autoinstall script. If this would be usefull, leave a
message in the Dashticz forum.

Clocks

Station Clock

This is an ‘old fashioned’ station clock. http://www.3quarks.com/en/StationClock

You can add the station clock to a column with:

3.2. Blocks 99

http://192.168.1.20:81/videostream.cgi?user=username&pwd=password&resolution=32&rate=0
http://192.168.1.20:81/videostream.cgi?user=username&pwd=password&resolution=32&rate=0
http://username:password@192.168.1.20:81/videostream.cgi?resolution=32&rate=0
http://username:password@192.168.1.20:81/videostream.cgi?resolution=32&rate=0
https://www.domoticz.com/wiki/Camera_Setup
https://github.com/ccrisan/motioneye/wiki
https://felenasoft.com/xeoma/en/
https://github.com/ccrisan/motioneye/wiki/Install-In-Docker
https://github.com/ccrisan/motioneye/wiki/Install-In-Docker
http://www.3quarks.com/en/StationClock

Dashticz Documentation, Release beta

columns[1]['blocks'] = ['stationclock'];

Block parameter

Parameter Description
size

Size of the stationclock in pixels. The default size of the station clock is the column width.
200 The clock will have a width and height of 200 pixels

scale

Scale factor for the width of the clock. Should be smaller than 1
0.75: Scales the clock down to 75% (default 1 = 100%).

body clock body (Uhrgehäuse)
dial stroke dial (Zifferblatt)
hourhand clock hour hand (Stundenzeiger)
minutehand clock minute hand (Minutenzeiger)
secondhand clock second hand (Sekundenzeiger)
boss clock boss (Zeigerabdeckung)
minutehandbehaviorminute hand behavior
secondhandbehaviorsecond hand behavior

The value for all the configuration parameters can be found in the code block below:

// clock body (Uhrgehäuse)
StationClock.NoBody = 0;
StationClock.SmallWhiteBody = 1;
StationClock.RoundBody = 2;
StationClock.RoundGreenBody = 3;
StationClock.SquareBody = 4;
StationClock.ViennaBody = 5;

// stroke dial (Zifferblatt)
StationClock.NoDial = 0;
StationClock.GermanHourStrokeDial = 1;
StationClock.GermanStrokeDial = 2;
StationClock.AustriaStrokeDial = 3;
StationClock.SwissStrokeDial = 4;
StationClock.ViennaStrokeDial = 5;

//clock hour hand (Stundenzeiger)
StationClock.PointedHourHand = 1;
StationClock.BarHourHand = 2;
StationClock.SwissHourHand = 3;
StationClock.ViennaHourHand = 4;

//clock minute hand (Minutenzeiger)
StationClock.PointedMinuteHand = 1;
StationClock.BarMinuteHand = 2;
StationClock.SwissMinuteHand = 3;
StationClock.ViennaMinuteHand = 4;

(continues on next page)

100 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

//clock second hand (Sekundenzeiger)
StationClock.NoSecondHand = 0;
StationClock.BarSecondHand = 1;
StationClock.HoleShapedSecondHand = 2;
StationClock.NewHoleShapedSecondHand = 3;
StationClock.SwissSecondHand = 4;

// clock boss (Zeigerabdeckung)
StationClock.NoBoss = 0;
StationClock.BlackBoss = 1;
StationClock.RedBoss = 2;
StationClock.ViennaBoss = 3;

// minute hand behavoir
StationClock.CreepingMinuteHand = 0;
StationClock.BouncingMinuteHand = 1;
StationClock.ElasticBouncingMinuteHand = 2;

// second hand behavoir
StationClock.CreepingSecondHand = 0;
StationClock.BouncingSecondHand = 1;
StationClock.ElasticBouncingSecondHand = 2;
StationClock.OverhastySecondHand = 3;

Config settings

To maintain backwards compatibility the station clock defaults can be set with the following config settings:

Settings Description
boss_stationclock

shows hands red axis cover
'RedBoss' 'NoBoss' 'BlackBoss' 'RedBoss' 'ViennaBoss'

hide_seconds_stationclock

true Hides second hand
false Default. Show second hand.

3.2. Blocks 101

Dashticz Documentation, Release beta

Basic clock

This is the standard clock. You can add this clock to a column with:

columns[1]['blocks'] = ['basicclock'];

Or define a custom block as follows:

blocks['myclock'] = {
type: 'basicclock'

}

columns[1]['blocks'] = ['myclock'];

Block parameter

Parameter Description
width

block width
1 .. 12: (default 12).

size

Size of the basic clock in pixels. The default size of the basic clock is the column width.
200 The clock will have a width of 200 pixels

scale

Scale factor for the width of the clock. Should be smaller than 1
0.75: Scales the clock down to 75% (default 1 = 100%).

102 Chapter 3. Configuration

Dashticz Documentation, Release beta

Flipclock

You can add the flipclock to a column with:

columns[1]['blocks'] = ['flipclock'];

Or define a custom block as follows:

blocks['myclock'] = {
type: 'flipclock'

}

columns[1]['blocks'] = ['myclock'];

Block parameter

Parameter Description
width

block width
1 .. 12: (default 12).

size

Size of the flipclock in pixels. The default size of the flip clock is the column width.
200 The clock will have a width of 200 pixels

scale

Scale factor for the width of the clock. Should be smaller than 1
0.75: Scales the clock down to 75% (default 1 = 100%).

showSeconds

true: (=default) Show seconds
false: Hide seconds

clockFace

24: 24 hour clock
12: 12 hour clock

3.2. Blocks 103

Dashticz Documentation, Release beta

Hayman clock

Clock by Emily Hayman. Design based off: https://dribbble.com/shots/2271565-Day-095-Time-is-Money

You can add the Hayman clock to a column with:

columns[1]['blocks'] = ['haymanclock'];

Or define a custom block as follows:

blocks['myclock'] = {
type: 'haymanclock'

}

columns[1]['blocks'] = ['myclock'];

Block parameter

Parameter Description
width

block width
1 .. 12: (default 12).

size

Size of the Hayman clock in pixels. The default size of the Hayman clock is the column width.
200 The clock will have a width of 200 pixels

scale

Scale factor for the width of the clock. Should be smaller than 1
0.75: Scales the clock down to 75% (default 1 = 100%).

Miniclock

You can add the miniclock to a column with:

columns[1]['blocks'] = ['miniclock'];

104 Chapter 3. Configuration

https://dribbble.com/shots/2271565-Day-095-Time-is-Money

Dashticz Documentation, Release beta

Usage

The clock types dtclock, stationclock and flipclock are responsive, meaning they will adapt the size to the block width.

Example code for the several clocks:

blocks['stationclock'] = {
width: 3,

};
blocks['stationclock2'] = {

type: 'stationclock',
width: 3,
boss: 'NoBoss',
body: 4,
secondhand: 0

};
blocks['stationclock3'] = {

type: 'stationclock',
width: 3,
body: 0,
dial: 0,
secondhand: 1

};
blocks['stationclock4'] = {

type: 'stationclock',
width: 3,
body: 3,
dial: 1,
boss: 'ViennaBoss',
secondhandbehavior: 2

};
blocks['stationclock5'] = {

type: 'stationclock',
width: 3,
boss: 'RedBoss' //'RedBoss' 'NoBoss' 'BlackBoss' 'RedBoss' 'ViennaBoss'

};

blocks['clock'] = {
width: 4

}

blocks['flipclock'] = {
width: 8

}

blocks['miniclock'] = {
width: 4

}

var columns = {};

columns[1] = {};
columns[1]['blocks'] = [

'stationclock',
'stationclock2',
'stationclock3',
'stationclock4',
'clock',

(continues on next page)

3.2. Blocks 105

Dashticz Documentation, Release beta

(continued from previous page)

'flipclock',
'miniclock',

];

106 Chapter 3. Configuration

Dashticz Documentation, Release beta

Dial

Most (all?) Domoticz devices can be represented with a dial.

To represent these devices with a dial add type:'dial' to the block definition:

blocks['my thermostat'] = {
type: 'dial', //Display as dial
idx: 123, //The Domoticz device id
title: 'Device name', //The title of the block as shown in the dial.
width: 6, //The width of the block relative to the column width

}

For the following device types a specific dial representation has been defined:

• Type = ‘Heating’

• Type = ‘P1 Smart Meter’

• Type = ‘Temp + Humidity + Baro’

• Type = ‘Temp + Humidity’

• Type = ‘Thermostat’

• Type = ‘Wind’

3.2. Blocks 107

Dashticz Documentation, Release beta

• SubType = ‘Evohome’

• SubType = ‘SetPoint’

• SubType = ‘Text’

• SwitchType = ‘Dimmer

• SwitchType = ‘On/Off’

• SwitchType = ‘Selector’

For other device types a generic dial will be used.

108 Chapter 3. Configuration

Dashticz Documentation, Release beta

Block parameters

Parameter Description
idx <idx>: IDX of the device (mandatory if named block)
title

'custom_title': Title that will appear on the dial
false: No title will be shown
true: The device name will be used as title

type 'dial': Indentifies this block as a dial (mandatory)
width 1..12: Dial width (optional, default 3)
height <number>: Dial height (optional, default based on width)
color '<string>': Color theme for the dial (default orange). Must be html color, hex code, rgb or

rgba string
last_update true: Shows last update info (default: true)
flash true: Outer dial will flash with user or default color (default: 0)
dialimage 'img/image.png': Show an image instead of the calendar icon (default: false)
dialicon 'fas fa-icon-alt': Show a different font awesome icon (default: ‘fas fa-calendar-alt’)
iconSwitch

The icon to use for an on/off dial switch.
'fas fa-power-off': Dedault icon
'fas fa-volume-up': Show a volume icon

showring true: Always show the outer color ring (default: false)
fixed true: Removes the needle and numbers around the dial (default: false)
inverted

Invert the value of Up/Down dials. See Up-down dials
false: Default for dimmers and Blinds Inverted
true: Default for regular Blinds

min <number>: Minimum value for the dial ring (if applicable) (default: 0)
max <number>: Maximum value for the dial ring (if applicable) (default: 0)
showunit false | true: Show unit behind value (if applicable) (default: false)
value The name of the device field to show as main value (only for default dials. Default: 'Data')
values Used to configure the values to be shown below the main dial value. See Dial values)
animation false | true: Set to false to disable dial animations on change (default: true)
switchMode

The switch mode for on/off dial switches and for dials without device.
'Toggle': Toggle the dial on click (=default for most dials. See next lines for exceptions)
'On': Switch On (=default for scenes and Push On switches)
'Off': Switch Off (=default for Push Off switches)

decimals

The number of decimals to show for numbers. Default is 1. For humidity, barometer it’s 0.
1: Numbers will be shown with one decimal

showvalue

true (=default). Show the main device value.
false: Don’t show the main device value.

splitdial Normally the dial ring color will color from the 0 value to the actual value, which can be positive
or negative. Set this parameter to false to start coloring the dial ring from the minimum value, also
for a negative minimum value.

steps

Step size for needle adjustment or up/down adjustment (Up/down dials). You can use this
parameter to set thermostat steps to 0.5
0.5: Use step size of 0.5

subtype

For certain dial types you can specify a subtype for a specific layout/format
'windspeed': For wind devices, to show wind speed instead of wind direction as needle
position
'windgust': For wind devices, to show wind gust instead of wind direction as needle position
'updown': For thermostat and blind devices, to render the dial with up and down buttons. See
Up-down dials

3.2. Blocks 109

Dashticz Documentation, Release beta

Usage

Dimmer

You can use the dial just like a dimmer slider. Click on the dial to switch the dimmer on/off.

blocks["bathroom_lights"] = {
idx: 439,
title: "Bathroom",
type: "dial",
color: "#57c4d6",
width: 2,

}

On/Off Switch

Any devices with this switchtype and type: ‘dial’ will automatically render as a dial button.

110 Chapter 3. Configuration

Dashticz Documentation, Release beta

blocks['kitchen_lights'] = {
idx: 451,
title: 'Kitchen',
type: 'dial',
color: '#57c4d6',
width: 2

}

Blinds

All four Domoticz blinds types can be rendered as dial:

• Blinds

• Blinds Percentage

• Blinds Inverted

• Blinds Inverted Percentage

The text in the up and down buttons can be configured via the block parameters textOpen and textClose
respectively.

3.2. Blocks 111

Dashticz Documentation, Release beta

Temp + Humidity

Will display temperature as the main value and humidity as extra info below. There is enough room to display
last_update with this dial.

blocks['temp_hum'] = {
idx: 435,
title: 'Weather 1',
type: 'dial',
setpoint: 15, // this value will be used to control the color of the outer ring,

→˓e.g. < 15 is blue, >= 15 is orange
min: -10, // set the minimum value for the dial range (default is 5)
max: 40, // set the maximum value for the dial range (default is 35)
width: 2,
shownumbers: true, // display the numbers on the dial (default is false)
showring: true, // display outer ring color all the time (default is false, will

→˓only display when hover over)
showunit: true // display unit for the dial value (default is false)

}

Temp + Humidity + Baro

Similar to above, but with Baro as extra info too. Last_update can be added but it is a tight fit.

112 Chapter 3. Configuration

Dashticz Documentation, Release beta

blocks['temp_hum_baro'] = {
idx: 72,
title: 'Weather 2',
type: 'dial',
setpoint: 15,
min: -10,
max: 40,
width: 2,
/* dialicon: ['fas fa-thermometer-half', 'fas fa-arrow-down'], */ // dial icons

→˓array when for dials have more than 1 extra info
/* dialimage: ['volumio.png', 'air.png'], */ // dial images array when for

→˓dials have more than 1 extra info
showunit: true,
shownumbers: true,
last_update: false // disabling last update to allow for more room

}

Wind

This dial has a 360 degree range (like a compass). The wind direction can be set to point to where the wind is blowing
from or to, by using the new “offset” parameter. Below I have set the dial to point to which direction the wind is
blowing.

3.2. Blocks 113

Dashticz Documentation, Release beta

blocks['wind'] = {
idx: 73,
title: 'Wind',
type: 'dial',
setpoint: 18, // the entire outer ring will change color based on this setpoint,

→˓factoring in the current temperature (default 15)
offset: 180, // 0 will point to the wind source, 180 will point to wind

→˓direction (default is 0)
width: 2,
showring: true,
showunit: true,
shownumbers: true,
last_update: false

}

In case you want to use the wind speed as needle position instead of the wind direction, add the following block
parameter:

subtype: 'windspeed'

P1 Smart Meter

Currently this is configured to use the “Today” counters; CounterDelivToday and CounterToday, i.e. production vs
consumption. Unlike any other dial, zero is at “12 o’clock” (instead of the tradional dial which starts at “7 o’clock”).

Today’s energy consumption is more than production

114 Chapter 3. Configuration

Dashticz Documentation, Release beta

Today’s energy production is more than consumption

blocks['p1'] = {
idx: 454,
title: 'P1 Meter',
type: 'dial',
width: 2,
min: -10,
max: 10,
showring: true,
showunit: true,
shownumbers: true,
last_update: false

}

Show multiple values of a P1 meter

3.2. Blocks 115

Dashticz Documentation, Release beta

blocks['p1counters'] = {
type: 'dial',
idx: 43,
values: [
{

value: 'Data0',
unit: 'kWh',
label: 't1',
scale: 0.001

},
{

value: 'Data1',
unit: 'kWh',
label: 't2',
scale: 0.001

},
{

value: 'Data2',
unit: 'kWh',
label: 'ret t1',
scale: 0.001

},
{

value: 'Data3',
unit: 'kWh',
label: 'ret t2',
scale: 0.001

},
],

showvalue: false,
animation: false,
shownumbers: true,
fixed: true,
width: 6

};

116 Chapter 3. Configuration

Dashticz Documentation, Release beta

Selector switch

Selector switches will be displayed as a menu. The dial menu can be shown with or without (=default) title.

blocks['dm'] = {
idx: 9,
type: 'dial',
title: true,
width:6,

}

blocks['dm-notitle'] = {
idx: 9,
type: 'dial',
width:6,

}

Toon Thermostat

“SwitchType”: “Selector”

blocks['toon_controller'] = {
idx: 419,

(continues on next page)

3.2. Blocks 117

Dashticz Documentation, Release beta

(continued from previous page)

title: 'Toon Controller',
type: 'dial',

width: 3,
}

1 = “Type”: “Temp”, 2 = “Type”: “Thermostat”

blocks['toon_thermostat_temp'] = {
idx: '421', // -> 2
title: 'Thermostat',
type: 'dial',
temp: 420, // -> 1
width: 3,

}

Up-down dials

You can render a Thermostat as a dial with up-down buttons by setting subtype to updown:

blocks['thermupdown'] = {
type: 'dial',
subtype: 'updown',
idx: 15,

}

You can add the temperature info from another device as well:

blocks['thermtempupdown'] = {
type: 'dial',
subtype: 'updown',
idx: 15,
temp: 36 //Use device 36 as actual temperature sensor

}

118 Chapter 3. Configuration

Dashticz Documentation, Release beta

Light dimmers and Blinds can be rendered as up-down dials as well.

For Light dimmers the middle button will work as on-off switch.

For Blinds the middle button will work as stop button.

With the inverted block parameter you can invert the values: 10% will become 90%, 70% will become 30%, etc.

I prefer that for an Up Down blinds dial the Up-button will open the blinds. The blinds percentage goes from 0% (fully
closed) to 100% (fully open).

This conflicts with the defaults in Domoticz where 0 is open, and 100 is closed.

For this reason the ‘inverted’ block parameter by default is set to true for regular Domoticz blinds devices, and set to
false for Domoticz Blinds Inverted devices.

By setting the steps parameter you can adjust the step size. For Thermostats the default step value is 0.5. For
Dimmers and Blinds the default step value is 10 (%).

Dial values

(Not applicable to blinds dials and up-down dials)

Each dial has a main value shown in the middle of the dial.

The values to be shown below the main dial value can be selected via the values parameters as follows:

blocks[16] = {
type:'dial',
values:['Humidity'],
showunit: true

}

Assuming that device 16 is a TempHumBar device then with the above block definition the temperature will be shown
(main value) and the humidity as additional value.

If needed you can customize the value units by adapting the values array as follows:

3.2. Blocks 119

Dashticz Documentation, Release beta

blocks[16] = {
type:'dial',
title:'HumBar',
values: [

{
value:'Humidity',
unit:'(%)',

},
{

value:'Barometer',
unit:'hPa',

},
],

}

It’s possible to combine data from several devices:

blocks['mytherm'] = {
type: 'dial',
idx: 19,
temp: 16,
min: 5,
max: 30,
values : [

{
idx: 10,
label: 'distance',
icon: 'fas fa-cloud',
unit: 'km'

},
{

label:'setpoint',
idx: 19,
unit: 'C'

},
]

}

120 Chapter 3. Configuration

Dashticz Documentation, Release beta

In this example the main device is device 25, which is a Thermostat device. The temperature value of device 27 is
displayed, because the temp parameter is set to 25. Below the temperature two additional values will be displayed.
As you can see you can add a label text as well.

To combine two text devices into one dial use the following:

blocks['combinedtext'] = {
type: 'dial',
idx: 15,
values : [

{
idx: 16,

},
]

}

With 15 and 16 two Domoticz Text devices.

And some more tricks:

blocks['combi'] = {
type: 'dial',
idx: 18,
showvalue: false,
values : [

{
idx: 52,

},
{

idx: 16,
value: 'Temp',
label:'outside: ',
unit: 'gr C',

(continues on next page)

3.2. Blocks 121

Dashticz Documentation, Release beta

(continued from previous page)

addClass:'w100'
}

]
}

The base type of this block is a text block, because device 18 is text device. However, the value of this device is not
shown, because the parameter showvalue is set to false.

Device 52 is a text device. The value is shown. Also the temperature of device 16 is displayed, with a custom label
and unit. By adding ‘w100’ as utility class, this value is shown on a new line, instead on the same line as the other
device.

By default, the ‘Data’ field of a device will be used as value. You can overrule this by setting the value parameter in
the values object as shown before.

For text devices, the value will be interpreted as text instead of a number. For other devices you can add type:
'text' to the value object to enforce that the value will be handled as text as well.

Multiple values

You can add multiple values to most dial types. Or, add a needle representing the value of another device to for instance
a dial switch:

122 Chapter 3. Configuration

Dashticz Documentation, Release beta

blocks['sw1'] = {
idx: 1056,
type:'dial',
values: [
{

idx: 1057,
isNeedle: true

},
],
width: 6,
showring: true,
shownumbers: true,
min: 0,
max: 10

}

Value parameters

You can use the following parameters within the values definition of the dial:

Parameter Description
label Text to add in front of the value
icon

Name of the FontAwesome icon to place between label and value
'fas fa-car'

image

Image to place between label and value (it will replace icon if defined)
'image.jpg'

value Name of the Domoticz device field to use as value
decimals Number of decimals to use while formatting the value (default: 0)
scale Multiplication factor for the value (default: 1)
type Set to 'text' to handle value as text instead of number
unit Text to add behind the value.
addClass Name of the CSS class to add to this item.
isSetpoint Handle this device/value as a setpoint device. You can adjust the device by rotating the needle.
isNeedle The needle will follow the value of this device. It’s read-only.

The following CSS classes are used:

.extra: All value items .item: One value item. .itemlabel: The label part of an item .dataunit: The
combination of value and unit .data: The value part of an item .unit: The unit part of an item

The addClass parameter is applied on item level.

Custom Styling

In Domoticz you can hide the Off level of a Selector Switch. In Dashticz you can hide the Off level by adding the
following code to your custom.css:

3.2. Blocks 123

Dashticz Documentation, Release beta

[data-id='<block_name>'] .dial-menu li:nth-child(1){
display: none;

}

To change the grey dial bezel color from grey to red:

.dt_content .dial {
background-color: #bb2424 !important;

}

To change the outer ring primary color from orange (default) to yellow:

.slice.primary {
color: #d9e900;

}

To change the outer ring secondary color from blue (default) to lime green:

.slice.secondary {
color: #26e500;

}

Split dials (dials which may have negative values) will receive the negative and positive class as well. In case
you’ve redefined the primary or secondary styling in custom.css, then you have to update the positive/negative styling
as well:

.slice.positive {
color: red !important;

}

.slice.negative {
color: blue !important;

}

To change the dial needle color from orange (default) to lime green:

.dial-needle::before {
border-bottom-color: lime !important;

}

To target just one dial, you can prefix the above code snippets with block id of the dial, for example:

[data-id='temp_hum_baro'] .dial-needle::before {
border-bottom-color: lime p!important;

}

Change the size of the dial-center:

.dial-center {
height: 65%!important;
width: 65%!important;

}

Hide extra data:

124 Chapter 3. Configuration

Dashticz Documentation, Release beta

.dial[data-id='dial_name'] .extra {
display: none;

}

Vertical center the dial menu:

.dial-menu .status {
justify-content: center;
display: flex;
flex-direction: column;

}

.dial-menu .status li {
margin: unset

}

Change the font of the dial menu text:

.dial-menu .status li {
font-size: 75%

}

To change the colors of the blinds buttons:

.dialbtn.up {
background-color: darkgreen;

}
.dialbtn.middle {

background-color: darkblue;
}
.dialbtn.down {

background-color: darkred;
}

And for the selected buttons:

/*Next block is the default styling*/
.dialbtn.selected {

background-image: radial-gradient(rgba(255,255,255,0.5), rgba(0,0,0,0));
}

.dialbtn.up.selected {
background-color: lightgreen;

}

.dialbtn.up.selected {
background-color: lightred;

}

To change the text size in the up and down buttons of a blinds dial

.up .text, .down .text {
font-size: 200%

}

3.2. Blocks 125

Dashticz Documentation, Release beta

Examples

Multicolor Selector Switch

CONFIG.js:

blocks['selector_switch'] = {
idx: 123,
type: 'dial',
width: 5,

}

columns[1] = {}
columns[1]['blocks'] = ['selector_switch']
columns[1]['width'] = 5;

custom.js:

function deviceHook(device) {
if (device.idx==123) {
var level=parseInt(device.Level);
device.deviceStatus='level'+level

}
}

custom.css:

/*ring color*/
.level10 .dial-center {

box-shadow: 0 0 25px 1px green !important;
}

/*selected item color*/
.level10 .status {

--dial-color: green !important
}

/*ring color*/
.level20 .dial-center {

box-shadow: 0 0 25px 1px red !important;
}

/*selected item color*/
.level20 .status {

--dial-color: red !important
}

(continues on next page)

126 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

/*ring color*/
.level30 .dial-center {

box-shadow: 0 0 25px 1px blue !important;
}

/*selected item color*/
.level30 .status {

--dial-color: blue !important
}

Windspeed

CONFIG.js:

blocks['wind'] = {
idx: 2442,
title: 'knopen',
type: 'dial',
color: '#57c4d6',
values: [

{
value: 'Speed',
addClass: 'bigwind',
decimals: 0,
}

],
setpoint: 18, // the entire outer ring will change color based on this s
offset: 0, // 0 will point to the wind source, 180 will point to wind d
showvalue: false,
width: 12,
showring: true,
showunit: true,
shownumbers: true,
last_update: false

}

custom.css:

3.2. Blocks 127

Dashticz Documentation, Release beta

.dial-center {
height: 65%!important;width: 65%!important;

}
[data-id='wind'] .dial-needle::before {

border-bottom-color: red!important;
}
.bigwind {

font-size: 300% !important;
color: white !important;
height: 40px !important;

}

Hide the additional data

You can set the values parameter to an empty array to hide the additional data, like this:

CONFIG.js:

blocks['windspeed'] = {
idx: 39,
title: 'Vitesse-vent',
type: 'dial',
subtype: 'windspeed',
values:[]

}

Domoticz log

You can add the Domoticz log to a column as follows:

columns[4] = {
blocks: ['log']

}

128 Chapter 3. Configuration

Dashticz Documentation, Release beta

Garbage Collector

If you want to have a block with next pickup dates for your garbage, add the following to CONFIG.js, and change
zipcode & housenumber to the correct data:

blocks['mygarbage'] = {
company: 'cure',
zipcode: '1234AB',
street: 'vuilnisstraat',
housenumber: 1,
maxitems: 12,
width: 12

}

Next, add the garbage to a column, like:

columns[1]['blocks'] = ['mygarbage']

You can change the colors of the trashcan (and/or the complete line) via the parameters in CONFIG.js.

3.2. Blocks 129

Dashticz Documentation, Release beta

Parameters

Block Pa-
rameter

Description

company Garbage company to use. See Currently supported cities/companies/services
icalurl '<url>': In case the garbage company is url the URL of the ical-file.
zipcode The zipcode
street Your street
housenum-
ber

Your housenumber

maxitems Number of items to show
maxdays Number of days to show (2 is today and tomorrow). Default: 32
width 1..12: Width of the block
hideicon true / false: To hide the garbage icon
use_names true / false: shows name of the garbage type
use_colors true / false: shows coloring for complete line
icon_use_colorstrue / false: shows colored or only white trashcan
title Title text
use_cors_prefix true / false: use a CORS proxy for getting data from provider. See PHP based CORS proxy
mapping Translation from description of the pickup event to a garbage type. See Garbage type, color and

icon.
garbage Settings for different garbage types. See Garbage type, color and icon.
date_separator Text to place between the garbage type and date (default ‘: ‘)
layout Layout of the garbage rows: 0 for plain text layout, 1 for table layout, 2 for text layou with line

break between garbage type and date.
ignoressl false (default)/ true: Set to true to disable https SSL checks

These block parameters can also be globally via a CONFIG.js setting:

CONFIG setting Description
garbage_use_cors_prefixtrue / false: use a CORS proxy for getting data from provider. See PHP based

CORS proxy
garbage_mapping Translation from description of the pickup event to a garbage type. See Garbage type,

color and icon.
garbage Settings for different garbage types. See Garbage type, color and icon.

Usage

Garbage type, color and icon

Dashticz uses two steps to show the garbage pickup type with the correct icon, text and coloring.

1. Garbage type detection. Configurable via parameter garbage_mapping

2. Settings (color, icon) per carbage type. Configurable via parameter garbage

To determine the garbage type Dashticz searches for certain text in the description of the garbage pickup event. Ex-
ample for the default definition:

config['garbage_mapping'] = {
rest: ['grof', 'grey', 'rest', 'grijs','grijze'],

(continues on next page)

130 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

gft: ['gft', 'tuin', 'refuse bin', 'green', 'groen', 'Biodégradables', 'snoei'],
pmd: ['plastic', 'pmd', 'verpakking', 'kunststof', 'valorlux'],
papier: ['papier', 'blauw', 'blue', 'recycling bin collection'],
kca: ['chemisch', 'kca','kga'],
brown: ['brown', 'verre'],
black: ['black', 'zwart'],
milieu: ['milieu'],
kerstboom: ['kerst'],

};

As you can see 9 different garbage types have been defined. Looking at the first line of the garbage mapping: If the
description of the pickup event contains the text grey the garbage type rest will be selected.

Note: The first rule that has a match with the event description will be selected.

After the mapping on a garbage type, the name, color and icon can be configured per garbage type as follows:

config['garbage'] = {
gft: {kliko: 'green', code: '#375b23', name: 'GFT', icon: 'img/garbage/kliko_

→˓green.png'},
pmd: {kliko: 'orange', code: '#db5518', name: 'PMD', icon: 'img/garbage/kliko_

→˓orange.png'},
rest: {kliko: 'grey', code: '#5e5d5c', name: 'Restafval', icon: 'img/garbage/

→˓kliko_grey.png'},
papier: {kliko: 'blue', code: '#153477', name: 'Papier', icon: 'img/garbage/kliko_

→˓blue.png'},
kca: {kliko: 'red', code: '#b21807', name: 'Chemisch afval', icon: 'img/garbage/

→˓kliko_red.png'},
brown: {kliko: 'brown', code: '#7c3607', name: 'Bruin', icon: 'img/garbage/kliko_

→˓brown.png'},
black: {kliko: 'black', code: '#000000', name: 'Zwart', icon: 'img/garbage/kliko_

→˓black.png'},
milieu: {kliko: 'yellow', code: '#f9e231', name: 'Geel', icon: 'img/garbage/kliko_

→˓yellow.png'},
kerstboom: {kliko: 'green', code: '#375b23', name: 'Kerstboom', icon: 'img/

→˓garbage/tree.png'},
};

The two examples above show the default definition of the garbage_mapping and garbage parameters. You can
redefine them in your CONFIG.js.

In case there are multiple collection items on the same date, then they will be sorted based on the order of the keys in
garbage parameter.

Currently supported cities/companies/services

Company City or area
afvalalert (Not working)
afvalstoffendienst Afvalstoffendienst: ‘s-Hertogenbosch, Vlijmen, . . . (NL)
almere Almere (NL)
alphenaandenrijn Alphen aan de Rijn (NL)
area Coevorden, Emmen, Hoogeveen (NL)

Continued on next page

3.2. Blocks 131

Dashticz Documentation, Release beta

Table 4 – continued from previous page
Company City or area
avalex Avalex: Delft, . . . (NL)
avri Rivierenland (Zaltbommel, . . .)(NL)
barafvalbeheer Bar-afvalbeheer for Barendrecht, Rhoon (NL)
best Best (NL)
blink Blink: Asten, Deurne, Gemert-Bakel, Heeze-Leende, Helmond, Laarbeek, Nuenen, Someren (NL)
circulusberkel Circulus Berkel: Apeldoorn, Bronckhorst, Brummen, Deventer, Doesburg, Epe, Lochem, Zutphen en Voorst (NL)
cure Cure: Eindhoven, Geldrop-Mierlo, Valkenswaard (NL)
cyclusnv Cyclus NV: Bodegraven-Reeuwijk, Gouda, Kaag en Braassem, Krimpen aan den IJssel, Krimpenerwaard, Montfoort, Nieuwkoop, Waddinxveen en Zuidplas (NL)
dar Dar: Berg en Dal, Beuningen, Druten, Heumen, Nijmegen, Wijchen (NL)
deafvalapp Afval App (NL)
edg EDG (DE)
gad Grondstoffen- en Afvalstoffendienst regio Gooi en Vechtstreek (NL)
gemeenteberkelland Berkelland: Borculo, Eibergen, Neede en Ruurlo (NL)
goes Goes (NL)
googlecalendar file in iCal format
groningen Groningen (NL)
hvc HVC Groep: 44 gemeenten in Flevoland, Noord- en Zuid-Holland (NL)
ical File in iCal format
maashorst Gemeente Maashorst: Uden, Volkel, Odiliapeel, Reek, Schaijk en Zeeland
meerlanden Meerlanden: Aalsmeer, Bloemendaal, Diemen, Haarlemmermeer, Heemstede, Hillegom, Lisse, Noordwijk en Zandvoort (NL)
mijnafvalwijzer Mijn Afval Wijzer (NL)
omrin Leeuwarden, Opsterland, Heerenveen, Waadhoeke, . . .
purmerend Purmerend (NL)
rd4 RD4: Beekdaelen, Brunssum, Eijsden-Margraten, Gulpen-Wittem, Heerlen, Kerkrade, Landgraaf, Simpelveld, Vaals en Voerendaal
recycleapp RecycleApp (BE)
rmn RMN: Baarn, Zeist, Nieuwegein, (NL)
rova Rova (NL)
suez Suez: Arnhem (NL)
sudwestfryslan Sudwest Fryslan (NL)
twentemilieu Twente Milieu (NL)
uden Uden (NL)
veldhoven Veldhoven (NL)
venlo Venlo (NL)
venray Venray (NL)
vianen Vianen (NL)
waalre Waalre (NL)
waardlanden Waardlanden: Gorinchem, Hardinxveld-Giessendam, Molenlanden en Vijfheerenlanden (NL)

Styling

Via custom.css the appearance of the garbage blocks can be modified.

The generic CSS selector for a garbage block is .garbage. To select a specific garbage block, you can use

[data-id='mygarbage'].garbage

To give the garbage block a fixed height in combination with a vertical scroll bar if needed:

.garbage {
height: 140px;

(continues on next page)

132 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

overflow: auto
}

Instead of .garbage you can also use .trash which is maintained for backwards compatibility.

Additional CSS classes are applied to the garbage rows as follows:

• .trashtoday: For garbage collection scheduled for today

• .trashtomorrow: For garbage collection scheduled for tomorrow

• .trashrow: For garbage collection scheduled for the days after tomorrow

The .trashtoday and .trashtomorrow classes are also applied on block level.

To set the block styling depending on the trash today or tomorrow schedule, you can add the following to custom.
css:

/* This will give the block a red border if trash collection is collected for today*/
.trash.trashtoday {

border-color: red
}

/* This will give the block a green border if trash collection is collected for
→˓tomorrow*/
.trash.trashtomorrow {

border-color: green
}

/* This will reduce the opacity in case no trash is scheduled for today or tomorrow */
.trash:not(.trashtoday):not(.trashtomorrow) .dt_state {

opacity: 0.2 !important;
}

/* This will increase the font of the trash row that is scheduled for today */
.dt_state .trashtoday {

font-size: 20px
}

Besides the row styling, you can also make use of column styling. The first column contains the trashtype and can be
selected via CSS class .trashtype. The second column contains the date separator, and can be selected via class
.trashsep. The third column contains the date, and can be selected via class .trashdate.

As an example, the default css styling for the columns is as follows:

.trashsep {
width: 10px;
text-align: center;

}

.trashdate {
text-align: right;

}

Upgrade from Dashtcz 3.6.6 and earlier

In earlier versions of Dashticz the garbage block was configured via settings in CONFIG.js as follows:

3.2. Blocks 133

Dashticz Documentation, Release beta

var config ={}
config['garbage_company'] = 'cure';
config['garbage_icalurl'] = 0;
config['garbage_zipcode'] = '1234AB';
config['garbage_street'] = 'vuilnisstraat';
config['garbage_housenumber'] = '1';
config['garbage_maxitems'] = '12';
config['garbage_width'] = '12';

Although this still is supported, it’s recommend to switch to the new block method as described in the first section.

Google Maps

First get a Google Maps API key: Getting a Google Maps API key

Adding the GM to the dashboard:

config['gm_api'] = 'xxxxxxxxxxxxxx'; // The API key you received from Google

(continues on next page)

134 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

var maps = {}
maps.location = { height: 400, width:4, latitude: 40.4989948, longitude: -3.6610076,
→˓zoom:15 }

and used in:

columns[3] = {}
columns[3]['blocks'] = [maps.location]

Block parameters

The Google Maps module uses the following block parameters:

Parameter Description
width Width of the Google Maps block compared to the full screen, not the column. Full screen width is

12. Meaning width of 6 will give a width of 50% of the screen size.
height The height of the block in pixels
latitude Latitude
longitude Longitude
zoom Zoom level

Config settings

The Google Maps module uses the following config settings:

Setting Description
gm_api The API key you received from Google

Usage

Getting a Google Maps API key

Obtain your Google Maps API key from:

https://developers.google.com/maps/documentation/javascript/get-api-key

• Press Get Started

3.2. Blocks 135

https://developers.google.com/maps/documentation/javascript/get-api-key

Dashticz Documentation, Release beta

• Choose Maps, and press Continue

• Follow the instructions

HTML custom block

This module can display a custom html block.

As example we will add a weather widget created on https://weatherwidget.io

Confige your widget on weatherwidget.io. Copy-paste the widget code into a html-file in the custom folder.

Example for Amsterdam:

<a class="weatherwidget-io" href="https://forecast7.com/en/52d374d90/amsterdam/" data-
→˓label_1="AMSTERDAM" data-theme="original" >AMSTERDAM
<script>
!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id))
→˓{js=d.createElement(s);js.id=id;js.src='https://weatherwidget.io/js/widget.min.js';
→˓fjs.parentNode.insertBefore(js,fjs);}}(document,'script','weatherwidget-io-js');
</script>

Copy this code into a file custom/weatherwidget.html

Create a block containing the htmlfile parameter:

blocks['weatherwidget'] = {
htmlfile: 'weatherwidget.html'

}

Add “weatherwidget” to a column:

columns[1]['blocks'] = [
'weatherwidget',

136 Chapter 3. Configuration

https://weatherwidget.io

Dashticz Documentation, Release beta

Parameters

Parameter Description
htmlfile Filename of the html code (relative to custom/)
margin true / false: To display a margin around the html block (default: false)
title '<string>': Custom title for the block
width The block width
icon The icon to show in the block. Default no icon.
image The image to use instead of an icon. Location is relative to ./img

Longfonds

RIVM measures our air quality on a daily basis. The air is not equally healthy everywhere in the Netherlands. With
the Longfonds check https://www.longfonds.nl/gezondelucht/check you can see how healthy the air is in your neigh-
bourhood. The data for this check comes from the RIVM. - The air quality is a value from 0 (good) to 11 (very
bad)

You can use the following config settings or use the block parameters to set the address:

config['longfonds_zipcode'] = '1234AZ';
config['longfonds_housenumber'] = '99';

You can customize longfonds as follows:

blocks['longfonds'] = {
title: 'Luchtkwaliteit',
switch: true,

(continues on next page)

3.2. Blocks 137

https://www.longfonds.nl/gezondelucht/check

Dashticz Documentation, Release beta

(continued from previous page)

width: 12,
}

Add 'longfonds' to your colum

Block parameters

Parameter Description
zipcode <zipcode>: Zipcode (if not set in config)
housenumber <housenumber>: Housenumber (if not set in config)
width 1..12: The width of the block relative to the column width
title '<string>': Custom title for the block
icon

Defines the icon for this block, choose from: https://fontawesome.com/icons?d=gallery&m=free
'fas fa-eye'

image

If you want to show an image instead of an icon, place image in img/ folder
'bulb_off.png'

url '<url>': URL of the page to open in a popup frame or new window on click.
newwindow

0: open in current window
1: open in new window
2: open in new frame (default, to prevent a breaking change in default behavior)
3: no new window/frame (for intent handling, api calls). HTTP get request.
4: no new window/frame (for intent handling, api calls). HTTP post request. (forcerefresh not
supported)

Moon

With the moon block you can add a picture of the current moon phase to your dashboard. Use the following code:

columns[2] = {}
columns[2]['blocks'] = ['moon']

If needed you can change the width:

blocks['moon'] = {
width: 6

}

We have 100 moon images. A moon cycle takes approximately 28 days. That means that the moon picture will refresh
approximately 4 times a day.

138 Chapter 3. Configuration

https://fontawesome.com/icons?d=gallery&m=free

Dashticz Documentation, Release beta

News

This module can display a rss feed.

A predefined modules exists with the name 'news', which can be configured with the parameter
default_news_url. See Config Settings

config['default_news_url'] = 'http://www.nu.nl/rss/Algemeen';

Additional rss feeds can be defined as well. See below:

blocks['news_tweakers'] = {
feed: 'http://feeds.feedburner.com/tweakers/nieuws',
showimages: false,
icon: 'fas fa-newspaper'

}

Add the news blocks to a column as usual:

columns[5] = {
blocks: ['news', 'news_tweakers']

}

Config Settings

Settings Description
default_news_url

URL of the default news feed
'http://www.nu.nl/rss/algemeen' = Example for nu.nl

news_scroll_after

Enter the ammount in seconds (delay)
5 = Scroll the news message every 5 seconds

3.2. Blocks 139

Dashticz Documentation, Release beta

News Parameters

Parameters Description
feed

URL of the news feed
'http://www.nu.nl/rss/algemeen' = Example for nu.nl

maxheight

'max' (default) : Adjust the height of the block to the maximum height of all the news items.
'auto' : Adjust the height to fit the displayed news item.
<number> : Set the height of the block to <number> pixels.

title

Title of the news block

icon

'fas fa-newspaper': icon to show in the news block

image

'image.png': image to show as icon. Image path is relative to the <dashticz>/img folder.

showimages

Show the inline images of the rss feed.
false: Do not show the inline images
true (=default): Show the inline images

filter

Filter the number of items or filter on publish date of items
'5 items': Show the 5 most recent news items
'3 days': Show the news items from the last three days.

Example

Add the following to CONFIG.js:

config['default_news_url'] = 'http://www.nu.nl/rss/Algemeen';

blocks['news_tweakers'] = {
feed: 'http://feeds.feedburner.com/tweakers/nieuws'

}

columns[5] = {
blocks: ['news', 'news_tweakers'],
width: 4

}

(continues on next page)

140 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

//Definition of screens
screens = {}
screens[1] = {

columns: [1, 2]
}
screens[2] = {

columns: [3,4]
}

screens[3] = {
columns: [5]

}

This will give on the third screen the following result:

If you click on a news item, then the news article will be shown in a popup window. Not all rss-feeds support this. The
news articles from Tweakers for instance are blocked.

Usage

The news module will download the information via a CORS proxy. The default settings normally work fine. For
configuration see PHP based CORS proxy

Not all rss-feeds support inline images. In that case you can set showimages to false.

NZBGet

Note: Not tested. Please leave a note in the Dashticz Support Forum if this module is working correctly.

Show your current downloads within the Dashboard.

Add to config.js:

3.2. Blocks 141

Dashticz Documentation, Release beta

var _HOST_NZBGET = 'http://192.168.1.3:6789';

AND in the blocks, add:

columns[1]['blocks'] = ['nzbget']

If you want to use other widths, add this to config:

blocks['nzbget'] = {}
blocks['nzbget']['width'] = 12;
blocks['nzbget']['downloads_width'] = 6;

OWM widgets

Collection of Open Weather Map widgets.

First create an account on https://openweathermap.org to obtain your free api key. You can use the following config
settings or use the block parameters to set the api key:

config['owm_api'] = '123abc....';

You can choose one of the 24 widgets with the layout block parameter:

blocks['mywidget'] = {
type: 'owmwidget', //to select a owm widget
layout: 11, //1 .. 24
width: 12,
}

142 Chapter 3. Configuration

https://openweathermap.org

Dashticz Documentation, Release beta

Block parameters

Parameter Description
apikey '123abc...': OWM api key. Default setting is the value of config[‘owm_api’]
layout 11: Select a layout from 1 to 24
city

'Amsterdam': The city name to search for. Default is config[‘owm_city’] value.
2643743: or the Open Weather Map city id.

country 'nl': Country used in the city name search. Default is config[‘owm_country’] value.
width 1..12: The width of the block relative to the column width

Public Transport

Dashticz currently supports the following types of public transport info:

1. Public transport timetable, configurable via a public transport block:

• Train info Netherlands (‘treinen’)

• Bus/tram/boat info Netherlands (‘ovapi’)

• irail (Belgium)

• delijn (Belgium)

2. Predefined blocks, see Predefined public transport blocks

• 'traffic'. Traffic info from Rijkswaterstaat Verkeersinfo (Netherlands)

• 'train'. Train status from Rijden de Treinen (Netherlands)

A public transport block can be configured as follows:

//example station id: Utrecht
blocks['treinen']= {

station: 'UT',
title:'OV Info',
show_lastupdate:true,
provider: 'treinen',
show_via: true,
icon: 'fas fa-train',
results: 5

};

3.2. Blocks 143

https://rijkswaterstaatverkeersinformatie.nl/
https://www.rijdendetreinen.nl/

Dashticz Documentation, Release beta

144 Chapter 3. Configuration

Dashticz Documentation, Release beta

Parameters

Parameter Description
station The station id. See Usage sections below to find how to obtain the right station id.
title Title of the block
show_lastupdatefalse , true. To display the time of the last update.
provider

Public transport info provider to use. Choose from
'treinen' Netherlands: trains
'ovapi' Netherlands: bus, tram, boat
'irailbe' Belgium: trains
'delijnbe' Belgium: bus, tram, boat

direction

Set the line direction(s) to filter the direction. (comma seperated) (for ovapi, delijnbe)
'1' : Filter on direction 1
'1,2': Filter on direction 1 or 2

destination

Set the end destination station name to filter the direction.
'Den Haag De Uithof,Den Haag Loosduinen' (comma seperated, case sensitive)

service

Set the specific services (Dutch: lijnnummers) to further filter the result
'3,4' (comma seperated)

show_via false , true. Hide the via-part.
show_direction false , true. Show the line direction (only for ovapi and delijnbe).
lang

'nl', 'fr', 'en', 'de' : Set the language for search results (only for irailbe)
Default value is derived from the Dashticz language setting.

icon

The font-awesome icon (including fas fa-)
'fas fa-bus', 'fas fa-tram', 'fas fa-train', 'fas fa-ship', 'fas
fa-subway', . . .

interval time in seconds for refreshing the data
results Number of results to show
width To customize the width. It’s not recommended to change the default value (12) because of the

size of the output.
url '<url>': URL of the page to open in a popup frame or new window on click.
newwindow

0: open in current window
1: open in new window
2: open in new frame (default, to prevent a breaking change in default behavior)
3: no new window/frame (for intent handling, api calls). HTTP get request.
4: no new window/frame (for intent handling, api calls). HTTP post request. (forcerefresh not
supported)3.2. Blocks 145

Dashticz Documentation, Release beta

Usage

Treinen

blocks['treinen']= {
station: 'UT',
title:'OV Info',
show_lastupdate:true,
provider: 'treinen',
show_via: true,
icon: 'fas fa-train',
results: 5

};

The station code can be found in search box at: https://www.rijdendetreinen.nl/vertrektijden

The station code is the short code right of the station name:

Examples:

• Utrecht: UT

• Amsterdam Centraal: ASD

ovapi

Use ovapi to obtain bus/tram/boat departure information:

146 Chapter 3. Configuration

https://www.rijdendetreinen.nl/vertrektijden

Dashticz Documentation, Release beta

blocks['ovapi'] = {
station: 'utrlun', //utrlun, Amstel: 60094
title:'Utrech Lunetten',
show_lastupdate:true,
provider: 'ovapi',
show_via: true,
icon: 'fas fa-bus',
results: 5

};

In the previous example bus station Utrecht Lunetten is used. A bus station can be a collection of several bus stops.
For instance, the busstation close to a railway station often has several platforms. Or, if there is a busstop at both sides
to the road, then this also may be defined as busstation.

• A bus station has a station code.

• A bus stop has a so called tpc code.

The tpc codes for individual bus stops can be found on https://ovzoeker.nl. On the map click on a bus stop. The popup
window will show the tpc code, which is the number behind ‘haltenummer’:

In the previous example the tpc code for Utrecht Lunetten Perron C is 50006541.

To find the station code follow the following url: https://v0.ovapi.nl/tpc/50006541

In the json code that will be displayed locate the first areacode:

3.2. Blocks 147

https://ovzoeker.nl
https://v0.ovapi.nl/tpc/50006541

Dashticz Documentation, Release beta

If you want to show all departures from all stops within a station (area) use the area code as station block parameter,
like in the example code block above:

station: 'utrlun',

If you want to show only the departures from one specific stop or platform, use the tpc code as tpc block parameter,
and remove the station parameter. Example:

blocks['mystop'] = {
tpc: '50006541',
title:'Utrecht Lunetten, perron C',
provider: 'ovapi',
results: 5

};

If you want to show all departures from all stops within a station (area), but there’s no station code available you can
use multiple tpc codes. Example:

blocks['mystops'] = {
tpc: '53602050,53602060',
title: 'Prof. Waterinklaan',
provider: 'ovapi',
results: 6

};

irail

To find the station code fill in the search box on: https://irail.be/stations/NMBS

After selecting your favorite station, and clicking on ‘View Liveboard’ the station code is the last word in the url in the
address bar:

For Bruxelles Central the station code is 008813003:

148 Chapter 3. Configuration

https://irail.be/stations/NMBS

Dashticz Documentation, Release beta

blocks['irailbe'] = {
station: '008813003',
title:'irailbe Brussel Central',
show_lastupdate:true,
provider: 'irailbe',
show_via: true,
icon: 'fas fa-train',
results: 5

};

De lijn

The station code consists of 6 digits. Search for your station code in the search box on https://delijn.be

Predefined public transport blocks

There are two predefined public transport blocks:

• 'traffic': Rijkswaterstaat Verkeersinfo (The Netherlands)

• 'train': Rijden de Treinen (The Netherlands)

Example for your ‘’CONFIG.js”:

columns[2] = {
blocks: ['traffic', 'train'],
width: 5

}

3.2. Blocks 149

https://delijn.be

Dashticz Documentation, Release beta

VVS

Not supported anymore (VVS disabled it’s api)

9292.nl

Not supported anymore. 9292 doesn’t provide a public API key.

Styling

Font size can be changed by adding this to your custom.css and change to your own preference:

.publictransport div {
font-size: 13px;

}

In case no info is available then the CSS class empty will be added to block. This can be used to adjust the styling of
an empty block via custom.css

Domoticz Security Panel

There are three ways to show the Domoticz Security Panel:

• As special block ‘secpanel’

• As Domoticz device

• In a frame

Security Panel special block

Add the special block to a column:

150 Chapter 3. Configuration

Dashticz Documentation, Release beta

columns[1]['blocks'] = ['secpanel'];

This will show a Dashticz security panel, which automatically scales to the column width.

Block parameter

Parameter Description
decorate

true: Show security panel decorated with screws, title, background image. (=default)
false Remove the decorations. This will result in a block with reduced height.

scale

Scale factor for the width of the clock. Should be smaller than 1. Height scales automatically.
0.75: Scales the clock down to 75% (default 1 = 100%).

headerText

The text to show in the header of the security panel
'Dashticz' (=default)

footerText

The text to show in the header of the security panel
'Dashticz Security Panel, 2020' (=default)

3.2. Blocks 151

Dashticz Documentation, Release beta

Additionally, if you have set your Domoticz security panel to “Armed Away”, you can now configure Dashticz to
secure automatically by applying the following setting in CONFIG.js:

config['security_panel_lock'] = 1;

If the panel has been set to “Armed Away”, it will display a fullscreen panel. The user will need to enter the code and
either set “Disarm” or “Armed Home” to enable the blue enter button”. Pressing this will then show your Dashticz
main screen.

Buttons:

• Green: Disarm

• Amber: Armed Home

• Red: Armed Away

• Blue: Enter Dashticz

The countdown delay is set in Domoticz, Setup > Settings > Security Panel > Delay. If set to zero, there will be no
countdown.

The above fullscreen lock feature does not require you to also have a Security Panel block added in CONFIG.js. But
if you want one, you can add one:

blocks['secpanel'] = {
title: '',
width: 6

}

Or you can have a block defined and disable the fullscreen lock feature with this (which is the default if not set):

config['security_panel_lock'] = 0;

To activate the security lock while in ‘Armed home’ mode use the following:

config['security_panel_lock'] = 2;

The secpanel height is based on its width to maintain the correct aspect ratio. The height is 1.35 x the width. You can
set the height and width in the block, or in custom.css:

[data-id='secpanel'] .dt_content {
height: 200px!important;
width: 148px!important;

}

So, when the system is “Armed Away”, you want the fullscreen security panel to blink if a certain device has been
changed state, e.g. closed > open?

You will need to add the “alarm” class to the fullscreen security panel’s modal (background):

function getStatus_123(block){
if (block.device.Data == 'open') {
$('.sec-modal').addClass('alarm');
}

}

This would need to be added to your custom.css:

152 Chapter 3. Configuration

Dashticz Documentation, Release beta

.alarm {
-webkit-animation: flash 1s infinite; /* Safari 4+ */
-moz-animation: flash 1s infinite; /* Fx 5+ */
-o-animation: flash 1s infinite; /* Opera 12+ */
animation: flash 1s infinite; /* IE 10+, Fx 29+ */

}

@keyframes flash {
0%, 49% {
background-color: #681717;
}
50%, 100% {
background-color: #e50000;
}

}

Security Panel block

This is the Domoticz Security Panel as block. You can use the normal block parameters. See Block parameters

blocks[123] = {}; //123 is the Domoticz Security Panel device ID

You can add this block to a column with:

columns[1]['blocks'] = [123];

CSS Tip! To the active button an additional class btn-warning is added:

.block_123 .btn.btn-warning {
color: black !important;

}

3.2. Blocks 153

Dashticz Documentation, Release beta

Security Panel frame

This is the Domoticz Security Panel as frame. You can use the normal frame parameters. See Frames

frames.secpanel = {key: 'secpanel', height: 390, width: 12, frameurl: "http://<YOUR
→˓DOMOTICZ IP>:<PORT>/secpanel/index.html"}

You can add this frame to a column with:

columns[1]['blocks'] = [frames.secpanel];

CSS Tip! What you can do to scale the content of the iframe. Assuming you add key: 'secpanel' to the
frames.secpanel definition, you can scale the secpanel with:

[data-id='secpanel'].frame iframe {
transform: scale(0.5);
border: 0px;
height: 600px !important;
width: 200%;

(continues on next page)

154 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

max-width: 200%;
transform-origin: 0 0;

}

Sonarr

Note: Not tested. Please leave a note in the Dashticz Support Forum if this module is working correctly.

Show your current series within the Dashboard.

Add to config.js:

config['sonarr_url'] = 'http://sonarrserver:8989';
config['sonarr_apikey'] = '000000000000000000000000000000';
config['sonarr_maxitems'] = 8;

AND in the columns, add:

columns[1]['blocks'] = ['sonarr']

If you want to use extra options, add this to config:

blocks['sonarr'] = {}
blocks['sonarr']['title'] = 'Sonarr';
blocks['sonarr']['width'] = 8;
blocks['sonarr']['title_position'] = 'left';
blocks['sonarr']['view'] = 'banner';

Spotify

Add a Spotify block to your Dashboard.

With the Spotify block you can select a Spotify playlist, set volume, skip to next song.

The Spotify block in Dashticz is not a player, but a remote control. That means there must be a Spotify player
somewhere in your local network. This can be your laptop running the Spotify player, or a Spotify connect speaker.

Note: You must have a Spotify Premium account

Before you can use it, create an app on the Spotify website:

Title: Dashticz
Description: whatever ;)

On the next page, copy “Client ID” to your CONFIG.js like:

config['spot_clientid'] = '1112f16564cf4f4dsd4cbe8b52c58a44';

At the same page, enter your dashticz-url in the Redirect URIs field, for example: http://192.168.1.3:8080/

3.2. Blocks 155

https://developer.spotify.com/dashboard/applications

Dashticz Documentation, Release beta

Warning: Don’t forget to push the save button!

In CONFIG.js add the block like:

columns[2] = {}
columns[2]['blocks'] = ['spotify']
columns[2]['width'] = 5;

Complete example:

config['spot_clientid'] = '1112f16564cf4f4dsd4cbe8b52c58a44';

columns[2] = {}
columns[2]['blocks'] = ['spotify']
columns[2]['width'] = 5;

Streamplayer

For those who like to listen to the radio on Dashticz, there is a Plugin available.

Add the following to your CONFIG.js:

var _STREAMPLAYER_TRACKS = [
{"track":1,"name":"Q-music","file":"http://icecast-qmusic.cdp.triple-it.nl/Qmusic_

→˓nl_live_96.mp3"},
{"track":2,"name":"538 Hitzone","file":"http://vip-icecast.538.lw.triple-it.nl/

→˓WEB11_MP3"},
{"track":3,"name":"Slam! NonStop","file":"http://stream.radiocorp.nl/web10_mp3"},
{"track":4,"name":"100%NL","file":"http://stream.100p.nl/100pctnl.mp3"},
{"track":5,"name":"StuBru","file":"http://mp3.streampower.be/stubru-high.mp3"},
{"track":6,"name":"NPO Radio 1","file":"http://icecast.omroep.nl/radio1-bb-mp3"},
{"track":7,"name":"Omroep Brabant","file":"http://streaming.omroepbrabant.nl/mp3"},

];

To enable, use the key: ‘streamplayer’ in the block definitions:

columns[2]['blocks'] = [1,4,'streamplayer']

To change the color of the Streamplayer buttons add the following to your custom.css:

div[data-id='streamplayer'] > div {
background-color: blue !important;
}

(continues on next page)

156 Chapter 3. Configuration

Dashticz Documentation, Release beta

(continued from previous page)

div[data-id='streamplayer'].playing > div {
background-color: orange !important;
}

This last part is applied if the Streamplayer is in playing state.

To add an image to the Streamplayer add the following to your CONFIG.js:

blocks['streamplayer'] = {
image: 'radio.png'

}

If you wanna use an icon instead of an image you have to change image to icon. You choose an icon from the
FontAwesome Free set.

Sunrise

This block will add the actual sunrise and sunset info to Dashticz. Example:

columns[1]['blocks'] = ['sunrise'];

Timegraph

The timegraph block collects the actual measurement data of one or more Domoticz devices, and shows them in a
moving time chart.

blocks[43] = {
type: 'timegraph',
values: ['NettUsage'],
duration: 60

}

There is no permanent storage: After a refresh of Dashticz the previously collected data is lost.

3.2. Blocks 157

Dashticz Documentation, Release beta

Block parameters

Parameter Description
width

The width of the block relative to the column width
1..12

title

Custom title for the block
'<string>'

icon

Defines the icon for this block, choose from: https://fontawesome.com/icons?d=gallery&m=free
'fas fa-eye'

image

If you want to show an image instead of an icon, place image in img/ folder
'bulb_off.png'

type

type must be set to 'timegraph' for a time graph
'timegraph'

height

The graph height.
'300px': The graph will have a height of 300 pixels

duration

Duration of the chartwindow in seconds.
60: Default: 300 (=5 minutes)

xTicks

Number of labels on the x-axis (= time axis)
10 (=default)

xTicks

Number of labels on the y-axis (= vertical axis)
5 (=default)

xLabels

To show labels on the x-axis
true (=default): Show labels on the x-axis
false : Hide labels on the x-axis

animation

Duration of the animation effect in msec. (Default: 0).
0 ... 1000. Maximum recommended value is 1000 msec

lineTension

With this parameter you can smoothen the graph line.
0: No smoothing
0.1: Default
1: Maximum smoothing

pointRadius

Size of the dot of the data sample in the graph.
1: Minimum (=default)
10: Pretty big

idx The main Domoticz device index for this block.
values List of values to show in the timegraph. See below for examples.

158 Chapter 3. Configuration

https://fontawesome.com/icons?d=gallery&m=free

Dashticz Documentation, Release beta

Usage

The values parameter is the most important parameter for this block. You can use it to select the data you want to
show from your device. It’s also possible to combine data from several devices in one graph.

Example to show the temperature of a THB device:

blocks[659] = {
type: 'timegraph',
values: ['Temp'],
duration: 60

}

To show the usage and delivery graph of a P1 meter:

blocks[43] = {
type: 'timegraph',
values: ['Usage', 'UsageDeliv'],

}

For a P1 meter it makes more sense to combine Usage and UsageDeliv into one graph. Dashticz recognizes the
custom field name NettUsage for this

blocks[43] = {
type: 'timegraph',
values: ['NettUsage'],

}

If a values element is a string, then it’s interpreted as the field name of the domoticz device.

To combine data from several devices use the following notation for the values block parameter

blocks['temps'] = {
type: 'timegraph',
duration: 600,
height: '100px',
xLabels: false,
values: [

{ idx: 28, value: 'Temp', label: 'Boiler'},
{ idx: 31, value: 'Temp', label: 'Return'},
{ idx: 27, value: 'Temp', label: 'Woonkamer'},
{ idx: 659, value: 'Temp', label: 'Badkamer'}

]
}

In the previous example the values elements are defined as objects. You can use the following parameters for each
values element:

3.2. Blocks 159

Dashticz Documentation, Release beta

Parameter Description
idx 123: Domoticz device number
value 'Temp': The field name of the Domoticz device.
label 'My name': The label to use for this value. The default value is the device name followed by

the field name.

Topbar

This module adds a topbar to Dashticz.

Default there will be the name, clock and settings-button presented in the Topbar. You can customize the Topbar with
the following settings in CONFIG.js:

var columns = {}
columns['bar'] = {}
columns['bar']['blocks'] = ['logo','miniclock','settings']

Item Description
logo Title of Topbar (as defined in config[‘app_title’] = ‘Dashticz’;)
miniclock Clock in Topbar
settings Settings & Fullscreen button in Topbar

Applicable config-parameters from CONFIG.js:

Parameter Description
app_title

Name of the Dashboard - Title to show in the Topbar
'Dashticz' = Show ‘Dashticz’ in the top bar

hide_topbar

0 / 1
Hide or Show Topbar

Complete example:

config['hide_topbar'] = 0;
config['app_title'] = 'Dashticz';

var columns = {}
columns['bar'] = {}
columns['bar']['blocks'] = ['logo','miniclock','settings']

Traffic info

With a traffic info block you can show the ANWB (Dutch) traffic info.

For public transport info see Public Transport.

A traffic info block can be configured as follows:

160 Chapter 3. Configuration

Dashticz Documentation, Release beta

var trafficinfo = {}
trafficinfo.anwbA1 = {

trafficJams: true,
roadWorks: false,
radars: false,
road:'A1',
provider: 'anwb',
show_lastupdate:true,
icon: 'fas fa-car',
width:12,
results: 100 };

segStart and segEnd can also be provided to filter the results even more.

3.2. Blocks 161

Dashticz Documentation, Release beta

Parameters

Parameter Description
road Name of the road(s) to show, comma seperated (Example: “A1, A73”)
title Title of the block
show_lastupdatefalse , true. To display the time of the last update.
provider

Traffic info provider to use. Choose from
'anwb' The Netherlands

icon

The font-awesome icon (including fas fa-)
'fas fa-car', . . .

refresh time in seconds for refreshing the data
results Number of results to show
width To customize the width. It’s not recommended to change the default value (12) because of the

size of the output.
trafficJams false , true. To show traffic jam info
roadWorks false , true. To show road work info
radars false , true. To show radar info
showempty

Control text to show in case of no traffic announcements
false: Don’t show a message in case of no traffic announcements
true: Display default message in case of no traffic announcements
'<text>': Display <text> in case of no traffic announcements

showemptyroads

Control text to show in case of no traffic announcements for a certain road (only applicable in
combination with block parameter road)
false: Don’t show a message in case of no traffic announcements for a certain road.
true: Display default message in case of no traffic announcements for a certain road.
'<text>': Display <text> in case of no traffic announcements for a certain road.

url '<url>': URL of the page to open in a popup frame or new window on click.
newwindow

0: open in current window
1: open in new window
2: open in new frame (default, to prevent a breaking change in default behavior)
3: no new window/frame (for intent handling, api calls). HTTP get request.
4: no new window/frame (for intent handling, api calls). HTTP post request. (forcerefresh not
supported)

162 Chapter 3. Configuration

Dashticz Documentation, Release beta

Styling

In case no info is available then the CSS class empty will be added to block. This can be used to adjust the styling of
an empty block via custom.css

TV Guide

In CONFIG.js add:

var tvguide = {}
tvguide.dutch = { key:'dutch', icon: 'fas fa-tv', width:12, channels: [1,2,3,4,31,46,
→˓92], maxitems: 10 }

And add the tvguide to a column with:

columns[4] = {
blocks: [tvguide.dutch]

}

When you click on the TV Guide block a www.tvgids.nl popup will open (default). You can set your own url via the
url parameter (optional).

3.2. Blocks 163

Dashticz Documentation, Release beta

TV Guide Parameters

Parameters Description
title

Title of the TV Guide block.

width

1..12 Width of the block.

layout

Shows or hides the channel name
0: Shows the channel name (=default)
1: Hides the channel name

key

'key': unique identifier.

icon

'fas fa-icon': icon to show in the TV Guide block. You choose an icon from the
FontAwesome Free set.

image

'image.png': image to show as icon. Image path is relative to the <dashticz>/img folder.

maxitems

Maximum number of items to show.

url '<url>': The web address of the page to open in the popup window when clicking the block.
channels

Selected channels.

The parameter channels contains an array of the selected channel IDs. Find the channel ID in the list below:

Table 5: Channel IDs
ID Channel
1 NPO 1
2 NPO 2
3 NPO 3
4 RTL 4
5 Eén
6 Canvas
7 BBC 1
8 BBC 2
9 ARD
10 ZDF

Continued on next page

164 Chapter 3. Configuration

Dashticz Documentation, Release beta

Table 5 – continued from previous page
ID Channel
11 RTL
12 WDR Fernsehen
13 NDR Fernsehen
15 RTBF La 1
16 RTBF La 2
17 TV 5
18 National Geographic
19 Eurosport 1
21 Cartoon Network
24 Film 1 Premiere
25 MTV
26 CNN
28 Sat 1
29 Discovery Channel
31 RTL 5
32 TRT int.
34 Veronica
36 SBS 6
37 NET 5
38 ARTE
39 Film1 Family
40 AT 5
46 RTL 7
49 VTM
50 3Sat
58 PRO 7
59 2BE
60 VT4
64 NPO Zapp Xtra NPO Best
65 Animal Planet OUD
70 NPO Cultura
83 3voor12
86 BBC World
89 Nickelodeon
90 BVN
91 Comedy Central
92 RTL 8
99 Ziggo Sport Select
100 RTV Utrecht
101 RTV West
102 RTV Rijnmond
103 NH
104 BBC Entertainment
105 Private Spice
107 Film 1 Sundance
108 RTV Noord
109 Omrop Fryslân
110 RTV Drenthe
111 RTV Oost

Continued on next page

3.2. Blocks 165

Dashticz Documentation, Release beta

Table 5 – continued from previous page
ID Channel
112 Omroep Gelderland
113 Omroep Flevoland
114 Omroep Brabant
115 L1 TV
116 Omroep Zeeland
148 Fox Sports Eredivisie
301 BBC 4
304 AMC
305 Discovery World
306 Discovery Science
308 3voor12 Central
309 3voor12 On Stage
310 3voor12 Portal
311 Disney XD
312 Nick Jr.
313 Boomerang
315 CBS Reality
317 Comedy Family
401 Playboy TV
403 Goed TV
404 FOXlife
406 Ons
407 OUTTV
408 RTL Lounge
409 Rtl crime
410 101 TV
411 Film1 Action
412 Film1 Premiere +1
413 HISTORY
414 Investigiation discovery
415 Travel Channel
416 Nat Geo Wild
417 Extreme Sports Channel
419 Ziggo Sport Golf
420 Ziggo Sport Racing
422 Euronews
423 Al Jazeera Engels
424 Disney Channel
427 MTV Brand new
428 Brava NL
429 Oranje TV
430 Film1 Drama
434 Dusk
435 24 Kitchen
436 Eurosport 2
437 Comedy Central Extra
438 TLC
439 Animal Planet
440 Fox

Continued on next page

166 Chapter 3. Configuration

Dashticz Documentation, Release beta

Table 5 – continued from previous page
ID Channel
460 SBS 9
461 Pebble TV
462 Shorts TV
464 BBC First
465 RTL Z
466 Ziggo Sport
467 Spike
468 Fox Sport 2
469 Fox Sport 3
470 Fox Sport 4
471 KPN presenteert
472 Crime + Investigation
473 Viceland

Weather forecast

Note: In version 3.8.2 Dashticz switched to the new weather block as described here.

Dashticz supports the following weather forecast provider:

• Open Weather Map: https://openweathermap.org/

Before you can use the weather module, you must request an API key at https://openweathermap.org/

Open Weather Map

A basic weather block can be defined as follows:

blocks['weather'] = {
type: 'weather',
apikey: 'abc123...xyz', /Your OpenWeatherMap API key
city: 'Amsterdam',

}

3.2. Blocks 167

https://openweathermap.org/
https://openweathermap.org/

Dashticz Documentation, Release beta

Besides the daily forecast, you can also show the current weather or an hourly forecast.

168 Chapter 3. Configuration

Dashticz Documentation, Release beta

Parameters

Block pa-
rameter

Description

type 'weather'. To select a weather block
width 1..12: Width of the block
refresh 3600 Update once per hour. (default=3600, minimum=900, 15 minutes)
scale

Number between 0 and 1 to make the weather block smaller
1 Normal block width
0.5 50% width

apikey 'abc123...xyz'. OWM api key
city 'Amsterdam'. City name. You can also use the OWM city id code.
country 'nl'. Country code.
name 'My place'. Name to use instead of city name on the dashboard.
lang 'nl': Language to use for OWM data
layout

Choose a layout for the weather block
0: Daily forecast (=default)
1: Hourly forecast
2: Current weather
3: Current weather detailed
4: Combination of 2,3,0,1

count 5: Number of forecast items to show (default=3). Only for daily and hourly forecast.
interval

Use every n-th forecast item.
1. Use every forecast item (=default)
3. Set to 3 to get 3-hourly forecast

decimals

Number of temperature decimals to show
1 One decimal (=default)

showMin

Show/hide minimum temperature (only for daily forecast)
false: Hide minimum temperature
true: Show minimum temperature (=default)

showRain

Show/hide rain rate (only for daily and hourly forecast)
false: Hide rain rate
true: Show rain rate (=default)

showDescription

Show/hide weather description (only for daily and hourly forecast)
false: Hide weather description
true: Show weather description

showWind

Show/hide wind info and wind dial (daily and hourly forecast only)
false: Hide wind info
true: Show wind info (=default)

useBeaufort Set to true to show wind speed in Beaufort instead of m/s
skipFirst Set to true to skip the first daily/hourly forecast card
monochrome

false: Show colored icons (animated weather icons only)
true: Show monochrome icons (animated weather icons only)

showCurrent Set to false to hide current weather (layout 4 only)
showDetails Set to false to hide current weather details (layout 4 only)
showDaily Set to false to hide daily weather forecast (layout 4 only)
showHourly Set to false to hide hourly weather forecast (layout 4 only)
icons

Icon set to use. See below
'line' Dynamic line icons
'linestatic' Static version of the line icons
'fill' Dynamic filled icons
'static' Static icons
'meteo' Alternative set of static icons

3.2. Blocks 169

Dashticz Documentation, Release beta

The weather module makes use of the following CONFIG parameters:

Parameter Description
owm_api '<api-key>' API-key provided by https://openweathermap.org/
owm_city

Your city or nearby city to use in OWM. You can also fill in the city id here.
'Utrecht'

'2748075'

owm_name

Name to use instead of city name
'Tuinwijk'

owm_country

Your country to use in OWM
'nl'

owm_lang

Set language for de description of the forecast (rain, cloudy, etc.). For available languages, see
https://openweathermap.org/forecast5/#multi
'' (empty string, default) Use Dashticz language setting

owm_cnt

Number of forecast elements (3-hour intervals or days) to show
1..5

owm_min

Show minimum temperature on 2nd row (only for daily forecast)
false / true

static_weathericons

true Static weather settings
false (default) Animated weather icons

use_beaufort

This config setting is used as default value for block parameter useBeaufort
true Use Beaufort for wind speed
false Use m/s for wind speed

Usage

In the next examples the config parameter owm_api and owm_city have been set globally, so they are not part of
the weather block definitions.

To show the hourly forecast with an 3 hour interval:

170 Chapter 3. Configuration

https://openweathermap.org/
https://openweathermap.org/forecast5/#multi

Dashticz Documentation, Release beta

blocks['weather1'] = {
type: 'weather',
layout: 1,
count: 7,
interval: 3,

}

To show the current weather, with a custom name:

blocks['weather2'] = {
type: 'weather',
layout: 2,
name: 'My place',

}

To show detailed info on the current weather:

blocks['weather3'] = {
type: 'weather',
layout: 3,
name:'Home is home',

}

3.2. Blocks 171

Dashticz Documentation, Release beta

Icons

Via the block parameter icons you can choose one of the predefined icon sets:

• ‘line’ (=default)

• ‘linestatic’

• ‘fill’

• ‘static’

• ‘meteo’

By setting the block parameter monochrome to true the icons will be displayed as monochrome.

This will give the following icons sets to choose from:

172 Chapter 3. Configuration

Dashticz Documentation, Release beta

styling

All blocks have the css class weather assigned in combination with weather_0, weather_1, . . . , where the
number indicates the layout number.

Further, all info items have css classes assigned. The names are self explanatory.

• icon: Weather icon

• day: Day item (‘Saturday’)

• time: Forecast time (hourly forecast only)

• city: City name

• description: Weather description

• temp: temperature

• max: Max temperature

• min: Min temperature

• temp: Current temperature

• feels: Feel-like temperature

• rain: Rain rate

• humidity

• pressure: Barometric pressure

• windspeed

• windgust

• winddirection

To capitalize the day of the week have to add the following code to custom.css:

.weather .day {
text-transform: capitalize;

}

Ziggo Horizon Box

Note: Not tested

If you have a Ziggo Horizon Box you can add it to a column with:

columns[1]['blocks'] = ['horizon'];

Config Settings

Settings Description
switch_horizon '<url>' url of the Horizon box

3.2. Blocks 173

Dashticz Documentation, Release beta

3.3 Columns

The various examples in the documentation show how to add blocks to columns, and how to add columns to screens.

Besides the column-width there are no additional column parameters or settings.

One thing to mention is that’s possible to reuse a column on more than one screen. This can be useful if for instance
you want to have the same first column for all screens.

3.4 Screens

There is the ability to use multiple screens within Dashticz. Each screen can use it’s own background. The background
can also automatically change for the part of the day.

//if you want to use multiple screens, use the code below:

var screens = {}
screens[1] = {}
screens[1]['background'] = 'bg1.jpg';
screens[1]['background_morning'] = 'bg_morning.jpg';
screens[1]['background_noon'] = 'bg_noon.jpg';
screens[1]['background_afternoon'] = 'bg_afternoon.jpg';
screens[1]['background_night'] = 'bg_night.jpg';
screens[1]['columns'] = [1,2,3]

screens[2] = {}
screens[2]['background'] = 'bg3.jpg';
screens[2]['background_morning'] = 'bg_morning.jpg';
screens[2]['background_noon'] = 'bg_noon.jpg';
screens[2]['background_afternoon'] = 'bg_afternoon.jpg';
screens[2]['background_night'] = 'bg_night.jpg';
screens[2]['columns'] = [4,5,6]

174 Chapter 3. Configuration

Dashticz Documentation, Release beta

3.4.1 Screen parameters

Parameter Description
background

Defines the screen background - the image file must be in the <dashticz>/img folder
'bg1.jpg'

background_morning

Defines the screen background for morning (06:00-10:59) - the image file must be in the
<dashticz>/img folder
'bg_morning.jpg'

background_noon

Defines the screen background for noon (11:00-15:59) - the image file must be in the
<dashticz>/img folder
'bg_noon.jpg'

background_afternoon

Defines the screen background for afternoon (16:00-19:59) - the image file must be in the
<dashticz>/img folder
'bg_afternoon.jpg'

background_night

Defines the screen background for night (20:00-05:59) - the image file must be in the
<dashticz>/img folder
'bg_night.jpg'

columns

Defines which columns are shown on this screen
[1,2,3]

auto_slide_page

Redefines the audo slide time as set in config[‘auto_slide_pages’] for this screen.
3: The time before auto slide to the next page is 3 seconds.

3.4.2 Usage

Layout per device

It is now possible to use another column/block setup per resolution.

To setup, use this code in config.js, change according your own needs:

var screens = {}
screens['default'] = {}
screens['default']['maxwidth'] = 1920;

(continues on next page)

3.4. Screens 175

Dashticz Documentation, Release beta

(continued from previous page)

screens['default']['maxheight'] = 1080;

screens['default'][1] = {}
screens['default'][1]['background'] = 'bg9.jpg';
screens['default'][1]['columns'] = [1,2,4]

screens['default'][2] = {}
screens['default'][2]['background'] = 'bg9.jpg';
screens['default'][2]['columns'] = [5,6,7]

screens['tablet'] = {}
screens['tablet']['maxwidth'] = 1024;
screens['tablet']['maxheight'] = 768;
screens['tablet'][1] = {}
screens['tablet'][1]['background'] = 'bg9.jpg';
screens['tablet'][1]['columns'] = [3,1]

screens['tablet'][2] = {}
screens['tablet'][2]['background'] = 'bg9.jpg';
screens['tablet'][2]['columns'] = [2,4]

Note: If you are testing this on your laptop with resizing your browser window, refresh to rebuild the columns/blocks.

Standby Screen

There is the ability to let Dashticz go into standby mode. This defined with the config['standby_after']
parameter in the CONFIG.js file. The screen get sort of grayed out and you can show items on the standby theme.
These items MUST have been declared and used in the Dashboard:

config['standby_after'] = 5; //Enter standby mode after 5 minutes

var columns_standby = {}

columns_standby[1] = {}
columns_standby[1]['blocks'] = ['clock','currentweather_big','weather'] //specify
→˓blocks for the standby mode
columns_standby[1]['width'] = 12;

The following config settings are applicable to the standby screen:

176 Chapter 3. Configuration

Dashticz Documentation, Release beta

Setting Description
standby_after

Enter the amount of minutes
0 = No standby mode(default)
1..1000 = Switch to standby after <value> minutes

standby_call_url’

[URL]
Enter the url for adjusting the brightness when entering stand-by mode

standby_call_url_on_end

[URL]
Enter the url for adjusting the brightness when exiting stand-by mode

Auto swipe, auto slide

Two auto swipe modes exist

1. Auto swipe back to a specific screen (default)

2. Auto slide to the next screen

The ‘swipe back’ mode is selected by setting config['auto_swipe_back_after'] to non zero. The ‘next
screen’ mode is selected by setting config['auto_slide_pages'] to non zero.

The initial delay before starting ‘next screen’ mode, can be set via config['auto_swipe_back_after'].

The default timeout which is used for each screen in ‘next screen’ mode can be defined by
config['auto_slide_pages']. However, you can overrule this for each screen by adding the
auto_slide_page parameter to the screen block. In case the screen parameter auto_slide_page is 0
, then this screen will be skipped during auto slide.

All timeouts (auto_swipe_back_after, auto_slide_pages, auto_slide_page) are defined in seconds.

The auto swipe countdown timer will reset after mouse moves and screen touches.

3.4.3 Styling

If you want to be able to scroll the screen vertically add the following to custom.css:

.swiper-slide {
overflow: auto!important

}

3.4. Screens 177

Dashticz Documentation, Release beta

178 Chapter 3. Configuration

CHAPTER 4

Customizations

4.1 Styling via custom.css

Note: In Dashticz v3.2.0 the css-classes for most of the special blocks have been updated. See Special blocks

Contents

• Styling via custom.css

– Introduction into CSS

– Domoticz blocks

* Used classes for Domoticz blocks

* Background color

* Styling of lastupdate text

* Icon colors of a Domoticz switch

– Special blocks

* CSS class definition for special blocks

* Block titles

* Font Size

* Smaller Title blocks (Height)

* Button: Render the title below the icon (all buttons)

* Render the title below the icon (specific button)

– Generic block related

179

Dashticz Documentation, Release beta

* Hover background color

* Reduced space around blocks

* Rounded corners

– Icons

* Larger (Bulb) icons

* All Icons on the Dashboard Larger

* Larger Logitech Media Server buttons

– Fonts & Text Size

* Change font size of 1 specific (text) device

* Change font size of public transport module

* Fontsize Trashcan Module

– Color & Transparancy

* Transparent Buttons Thermostat

* Colored Lightbulbs

– Lightbulbs color & Opacity

– Miscellaneous

* Hide block

* Remove Swiper Pagination Bullet

* Remove break line

* Customized drop down block

* Change size and color of Standby Screen items

* Prevent click handling of a block

– Popup windows

Almost all visual elements on the Dashticz dashboard are styled via so called style sheets. Normally the abbreviation
CSS (Cascading Style Sheets) is used for this. The source files that define the style information also have the .css
extension.

There are a lot of creative users on the Domoticz Forum, that modify the CSS. A lot of examples can be found on
the forum. Some examples will be summarized here, which you can use as a starting point to customize your own
dashboard.

The default styling is defined in the file <dashticz>/css/creative.css. While you can use this file for
inspiration, you should not modify it, since the default styling can be modified in the file custom.css, located in
the folder <dashticz v3>/custom

TIP: Comments can be used to explain the code, and may help when you edit the source code at a later date. A CSS
comment starts with /* and ends with */. Comments can also span multiple lines:

/* This is a single-line comment */

This sections has some examples of CSS that can be placed in custom.css, so you can create your own look and
feel.

180 Chapter 4. Customizations

Dashticz Documentation, Release beta

4.1.1 Introduction into CSS

A lot of CSS tutorials are available online. The first google result: https://www.w3schools.com/css/

A CSS style definition consists of two parts.

1. Selector

2. Style modifier

With the selector part you select certain elements on the Dashboard. With the style modifier part the visual appearance
can be defined.

Almost all Dashticz elements on the dashboard have one or more class definitions associated with it. For instance
most blocks have the class transbg associated with it. As an example, You can use this class name to change the
background colors for all blocks at once. Add the following to custom.css:

.transbg {
background-color: red !important;

}

In this example the selector element is .transbg. With this selector all elements with the class transbg are
selected. On the selection we apply a new background-color style.

In some cases, also in the example above, the statement !important needs to be added, to enforce that this style
setting will overrule other style settings that have been defined by other style modifiers.

If you want to change only the background of one specific block you have to narrow the selector. For this you can
use the data-id parameter. All blocks that you have defined with blocks[idx] will have the data-id parameter with
value 'idx' attached to it:

[data-id='120'] {
background-color: red !important;

}

[data-id='120'] {
background-color: red !important;

}

All blocks on the dashboard have a unique id, which are sequentially numbered. How to find the block id will be
explained later. Assuming the block you want to change has block id 3 then add the following to custom.css:

#block_3 .transbg {
background-color: red !important;

}

This means: Change the background color to red for the elements with the class transbg associated with it within
the block with the id block_3.

So remember, blocks can have classes, parameters and id’s associated with them. Blocks are selected by choosing the
right class, parameter, and/or id.

If you right-click on a block, and select Inspect you can see the assigned classes in DevTools.

4.1.2 Domoticz blocks

Used classes for Domoticz blocks

Example block definition:

4.1. Styling via custom.css 181

https://www.w3schools.com/css/

Dashticz Documentation, Release beta

blocks[120] = {
width: 6

}

Placed in a column it can give the following result:

The whole block has class block_120 First line: title Second line: state Third line: lastupdate

Besides the specific block label .block_120 the whole block will also contain the generic css class label .mh.

In case the Domoticz device contains subdevices, like a TempHumBar device, three devices will be created. In this
case instead of .block_120 the labels .block_120_1, .block_120_2` and ``.block_120_3 will be
used.

If you have used a specific blocks key in combination with the idx parameter, the key label will be used as CSS class
label as well, like this:

blocks['mydevice'] = {
idx: 120,
width: 6

}

This block will have the CSS class label .block_mydevice. Again, if device 120 has subdevices, the following
CSS classes will be assigned: .block_mydevice_1, .block_mydevice_2 and .block_mydevice_3.

Last variation: A specific blocks key in combination with a specific subdevice:

blocks['mydevice'] = {
idx: '120_2',
width: 6

}

This block will have the CSS class label .block_mydevice

Background color

To change the background color of all Domoticz blocks:

div[class*='block_'] {
background-color: red !important;

}

To change the height of only this block:

.block_120 {
height: 150px !important;

}

182 Chapter 4. Customizations

Dashticz Documentation, Release beta

Styling of lastupdate text

To change the font-size and color of the lastupdate text of this block:

.block_120 .lastupdate {
font-size: 20px;
color: blue;

}

Icon colors of a Domoticz switch

To change the icon colors for only this block:

.block_120 .on {
color:#F1C300;

}

.block_120 .off {
color:#fff;

}

In the previous example you can see the on class or off class can be used to select a block depending on the state of
the Domoticz device.

4.1.3 Special blocks

CSS class definition for special blocks

The CSS class approach for special blocks are slightly different as the Domoticz blocks. Also not all special blocks
have been transformed to this template yet. It’s applicable to the following blocks:

• alarmmeldingen, blocktitle, button, calendar, camera, coronavirus, dial, frame, graph, longfonds, news, nzbget,
publictransport, secpanel, stationclock, streamplayer, traffic, trafficinfo

Currently it’s not applicable to:

• coins, garbage, sonarr, spotify, weather_owm, weather

Each top level block has the class dt_block and the name of block type as class assigned. If you have defined this
block via blocks['mykey']=... then the value of the data-id parameter will be set to 'mykey'. If you have

4.1. Styling via custom.css 183

Dashticz Documentation, Release beta

defined the block by using an object, like buttons.buienradar= then you can define the key by making use of
the key-parameter in your block definition.

So if you want to select all blocktitles, add the following to custom.css:

.blocktitle {
background: blue !important;

}

If you want to change the title part of all blocktitles:

.blocktitle .dt_title {
font-size: 50px;
color: red;

}

If you want to change only a specific blocktitle:

[data-id='title1'].blocktitle {
background: yellow !important;

}

Block titles

Example block definition:

blocks['myblocktitle'] = {
type: 'blocktitle',
title: 'My Devices Block'

}

To select all the blocktitles and change the background color:

.blocktitle {background-color: gray !important;}

To change the background color for only this block title:

.dt_block[data-id='myblocktitle'] {background-color: gray !important;}

As you can see in the previous example we use the generic block selector dt_block having the value
myblocktitle for the parameter data-id. This is the generic way to select a specific special block.

Font Size

To change the font size of this block title:

.dt_block[data-id='myblocktitle'] .dt_title {
font-size: 30px;

}

Smaller Title blocks (Height)

184 Chapter 4. Customizations

Dashticz Documentation, Release beta

.blocktitle {
height: 60px !important; /* default height=75px */
padding-top: 3px !important; /* center text for new height */

}

Button: Render the title below the icon (all buttons)

.button {
flex-direction: column !important;
min-height: 85px;

}

A Domoticz device block normally has a height of 85 pixels (small devices: 75 pixels).

Render the title below the icon (specific button)

You have to add the key parameter to your button definition in CONFIG.js:

buttons.mybutton = {
key: "mykey",
icon: "fas fa-newspaper",
title: "newspaper

}

And then add the following to custom.css:

.button[data-id='mykey'] {
flex-direction: column !important;

}

4.1.4 Generic block related

Hover background color

.transbg.hover.mh:hover { background-color: red;}

Reduced space around blocks

To make the space between all blocks smaller:

.transbg[class*="col-xs"] {
border: 3px solid rgba(255,255,255,0); /* border: 7px -> 3px - Smaller

→˓space between blocks */
}

Rounded corners

Rounded corners for all blocks:

4.1. Styling via custom.css 185

Dashticz Documentation, Release beta

.transbg[class*="col-xs"] {
border-radius: 20px; /* Rounded corners */

}

4.1.5 Icons

Larger (Bulb) icons

.far.fa-lightbulb:before{
font-size: 24px;

}

.fas.fa-lightbulb:before{
font-size: 24px;

}

All Icons on the Dashboard Larger

To make all icons on the Dashboard larger in one move, just simple add (choose font-size wisely!!):

.far,.fas,.wi {
font-size:24px !important;

}

Larger Logitech Media Server buttons

.fas.fa-arrow-circle-left {
font-size: 50px !important;
}

.fas.fa-stop-circle {
font-size: 50px !important;

}
.fas.fa-play-circle {

font-size: 50px !important;
}
.fas.fa-arrow-circle-right {

font-size: 50px !important;
}
.fas.fa-pause-circle {

font-size: 50px !important;
}

4.1.6 Fonts & Text Size

Change font size of 1 specific (text) device

Every block has an unique identifier-classname, which look something like ‘”.block_xxx”’ (where xxx is the idx of
your choice) that can be used in css. Example:

186 Chapter 4. Customizations

Dashticz Documentation, Release beta

.block_233 {
font-size:120px !important;
color:red !important;

}

Change font size of public transport module

.publictransport div {
font-size: 13px;

}

Fontsize Trashcan Module

.trash .state div.trashrow {
font-size: 12px;

}

.trash .state div.trashtoday {
font-size: 16px;

}

.trash .state div.trashtomorrow {
font-size: 14px;

}

4.1.7 Color & Transparancy

Transparent Buttons Thermostat

.input-groupBtn .btn-number {
opacity: 0.5;
color: white;
background-color: rgb(34, 34, 34);
border-radius: 0px;
padding: 6px 10px 6px 10px;
line-height: 20px;
background-color: transparent;

}

Colored Lightbulbs

It is possible to use colors for the bulb-icons. In custom.css add something like:

.fas.fa-lightbulb {
color:#F1C300;

}
.far.fa-lightbulb {

color:#fff;
}

4.1. Styling via custom.css 187

Dashticz Documentation, Release beta

Result:

4.1.8 Lightbulbs color & Opacity

• Color: green

• Opacity: 0.4

.fas.fa-lightbulb {
color: rgba(0,255,0,0.4)

}

4.1.9 Miscellaneous

Hide block

div[data-id='myblock'] {
display: none

}

Change 'myblock' to your own block name

Remove Swiper Pagination Bullet

.swiper-pagination-bullet {
display: none !important

}

Remove break line

.block_107 br:nth-child(2) {
display: none

}

Change 107 to your own block number

188 Chapter 4. Customizations

Dashticz Documentation, Release beta

Customized drop down block

.block_438 .icon {
width: 85%;
height: auto;

}
.block_438 .title,
.block_438 br:nth-child(2) {

display: none;
}
.block_438 .col-data select {

font-size: 150%;
width: 100%;
background-color: rgb(242,242,242);

}

Change 438 to your own block number

Change size and color of Standby Screen items

.standby .clock{
font-size:250px !important;
color: #718084!important;

}
.standby .weekday,
.standby .date {

font-size:80px !important;
color: #4E585B !important;

}

Prevent click handling of a block

For some blocks you may want to disable click handling, for instance for the news block, or for the frame content.
This section describes how this may be achieved.

Assume you’ve defined your block in CONFIG.js via:

blocks['news'] = {
...

}

then you can disable handling of click events by adding the following to custom.css:

[data-id="news"].dt_block {
pointer-events: none

}

or, add the addClass block parameter:

4.1. Styling via custom.css 189

Dashticz Documentation, Release beta

blocks['news'] = {
addClass: 'noclick',
....

}

and add the following to custom.css:

.noclick {
pointer-events: none

}

Both methods also work for frames.

4.1.10 Popup windows

Popup windows have the following class attached to it: modal-dialog-custom.

The popup window contains a div with the class modal-content. Depending on the popup type, the following
classes will be applied as well:

• modal-url For an url opened in a popup window

• modal-graph For a graph opened in a popup window

• modal-popup For a popup created from the popup block parameter, except when the popup parameter
refers to a graph block. In the latter case, the modal-graph parameter will be applied.

A modal-url popup window, will have a white background, white border, and black ‘close’ button.

The other popup windows will have a black background, and a white ‘close’ button.

The default styling is a black background, with white ‘close’ button.

As an example, to give url-popups a green backgrond with a red close button:

.modal-content.modal-url {
background-color: green

}

.modal-content.modal-url .close {
color: red;
opacity: 1;

}

4.2 Functionality via custom.js

There is the possibility to use your own functions in Dashticz. For this you can edit the file <dashticz folder>/
custom/custom.js.

4.2.1 function afterGetDevices()

This predefined function will be called after every update of a Domoticz device.

You can enter code inside this function which you want to be called.

Of course, you can also use stuff like $(document).ready() etc. . .

190 Chapter 4. Customizations

Dashticz Documentation, Release beta

The following example shows how you can change the styling of a Domoticz device based on the status:

function afterGetDevices(){
if (Domoticz.getAllDevices()[120].Data == 'Off') {

$('.block_120 .title').addClass('warningblue');
$('.block_120 .state').addClass('warningblue');

}
else {

$('.block_120 .title').removeClass('warningblue');
$('.block_120 .state').removeClass('warningblue');

}
}

In this example the CSS style ‘warningblue’ is applied to the title and state part of Domoticz block 120 if the state
is ‘Off’ (as used by switches). For this example to work you must also add the definition for warningblue to
custom.css. For instance as follows:

.warningblue {
color: blue !important;

}

4.2.2 function getExtendedBlockTypes(blocktypes)

Some blocktypes are filtered out by their distinct name and therefore will not produce the nice icons. Referring to
blocktypes.Name = {} section in blocks.js. Add the following function to show the icons and data-layout
for blocks with your own names.

function getExtendedBlockTypes(blocktypes){
blocktypes.Name['Maan op'] = { icon: 'fa-moon-o', title: '<Name>', value: '<Data>'

→˓}
blocktypes.Name['Maan onder'] = { icon: 'fa-moon-o', title: '<Name>', value: '

→˓<Data>' }
return blocktypes;

}

4.2.3 function getBlock_IDX(block)

Want your block to show up differently then Dashticz generates and do you have a little bit of coding skills? Add to
custom.js one of the examples:

function getBlock_233(block){ //change 233 to the idx of your device!
var idx = block.idx; //the Dashticz id
var device = block.device; //The Domoticz device info
var $mountPoint = block.$mountPoint // The DOM entry point for this block

$mountPoint.find('.mh') //Find the correct block
.off('click') //remove

→˓any previous click handler
.click(function() { //install new click

→˓handler
switchDevice(block, 'toggle', false); //switch the device on click

})
.addClass('hover'); //and add the

→˓predefined hover css class

(continues on next page)

4.2. Functionality via custom.js 191

Dashticz Documentation, Release beta

(continued from previous page)

var html='';
html+='<div class="col-xs-4 col-icon">';

if(device['Status']=='Off') html+=iconORimage(block,'fas fa-toggle-off','','off
→˓icon');

else html+=iconORimage(block,'fas fa-toggle-on','','on icon');
html+='</div>';
html+='<div class="col-xs-8 col-data">';
html+='<strong class="title">'+device['Name']+'
';
if(device['Status']=='Off') html+='AFWEZIG';
else html+='AANWEZIG';

if(showUpdateInformation(block)) html+='

→˓'+moment(device['LastUpdate']).format(settings['timeformat'])+'';

html+='</div>';
return html;

}

4.2.4 function getStatus_IDX(block)

This function is called when a Domoticz device is updated. You can use this function for instance to set specific block
parameters depending on the value of the device.

Example, change the icon based on the device value (in this case device 413, the first subdevice):

function getStatus_413_1(block) {
var usage = block.device.Usage;
if (parseFloat(usage) > 0) {

block.icon = 'fas fa-sun slow-spin'
} else {

block.icon = 'fas fa-sun';
}

}

Example, add a red background to a switch when energy usage reaches a limit:

function getStatus_145(block){
var idx = block.idx;
var device = block.device;

if(parseFloat(device['Data'])>23){
block.addClass='warning';

}
else {

block.addClass='';
}

}

And in custom.css add your css, according to this example:

.warning {
background: rgba(199,44,44,0.3) !important;
background-clip: padding-box;

}

Or if you like a blinking version:

192 Chapter 4. Customizations

Dashticz Documentation, Release beta

.warning {
background: rgba(199,44,44,0.3) !important;
background-clip: padding-box;
border: 7px solid rgba(255,255,255,0);
-webkit-animation: BLINK-ANIMATION 1s infinite;
-moz-animation: BLINK-ANIMATION 1s infinite;
-o-animation: BLINK-ANIMATION 1s infinite;
animation: BLINK-ANIMATION 1s infinite;

}

@-webkit-keyframes BLINK-ANIMATION {
0%, 49% {

background-color: rgba(199,44,44,0.3);
background-clip: padding-box;
border: 7px solid rgba(255,255,255,0);

}
50%, 100% {

background-color: rgba(199,44,44,0.7);
background-clip: padding-box;
border: 7px solid rgba(255,255,255,0);

}
}

Example, change the block background color to the setted light RGB color:

function getStatus_20(block){
var color = JSON.parse(block.device.Color);
if (block.device.Data!='Off') {

var colorStr = `rgb(${color.r},${color.g},${color.b})`;
$(block.mountPoint + ' > div').css('background-color', colorStr)

}
else

$(block.mountPoint + ' > div').css('background-color', '')
}

In case you have defined a block with a custom key name in combination with the idx parameter, then the key name
will be used in the function call. Example: You use the following block definition:

blocks['myblock'] = {
idx: 145

}

In the previous example the following function in custom.js will be called: function
getStatus_myblock(block) (and not function getStatus_145(block))

Example, Trigger on different text values:

function getStatus_14146(block){ // where 14146 is your block IDX
var idx = block.idx;
var device = block.device;
var tekst = device['Data'];

if(device['Data']=="No Data"){
block.addClass='none'
block.icon = 'far fa-thumbs-up'

}
// geen actie

(continues on next page)

4.2. Functionality via custom.js 193

Dashticz Documentation, Release beta

(continued from previous page)

else if (tekst.includes('geen waarschuwingen')){
block.addClass='none'
block.icon = 'far fa-thumbs-up'
block.title = 'Geen Melding'

}

// zware windstoten
else if (tekst.includes('Kans op zware windstoten')){

block.addClass='warningyellow'
block.icon = 'fas fa-wind'
block.title = 'Wind'

}
}

function getChange_IDX(block)

This function gets called when the value of a Domoticz device changes. This function will only get called after
updating the block. If you want to change the block definition as a result of the status you should use the getStatus
function as described above.

Change value of another block

By calling Dashticz.setBlock from the getStatus function you can change another block as well. Example:

function getStatus_2(block) {
var idx = block.idx;
var device = block.device;
console.log(device.Level)
if (parseFloat(device.Level) === 0) {

block.title='level 0';
block.icon='fas fa-train';

Dashticz.setBlock('mytitle', {
title: 'also 0',
icon: 'fas fa-train
});

}
else {

block.title='level is not 0 but ' + device.Level;
block.icon="fas fa-bus";

Dashticz.setBlock('mytitle', {

(continues on next page)

194 Chapter 4. Customizations

Dashticz Documentation, Release beta

(continued from previous page)

title: 'not 0, but ' + device.Level,
icon: 'fas fa-bus
});

}
}

The getChange_2 function gets called when the data of device with index 2 changes.

This previous example will also change a block that is defined by blocks['mytitle'] (for instance a blocktitle):

blocks['mytitle'] = {
type: 'blocktitle',
title: 'Default',
icon: 'fas fa-car'

}

4.2.5 Device hook

On every device update the device hook is called first. You can use the device hook to manipulate device data before
the update is send to the Dashticz blocks.

Example:

function deviceHook(device) {
if (device.idx==43) {

device.NettCalc = parseFloat(device.Usage) - parseFloat(device.UsageDeliv)
device.deviceStatus = device.NettCalc >= 0 ? 'positive':'negative';

}
}

The device parameter contains the device data as received from Domoticz. In the previous example the device field
‘NettCalc’ is calculated, which can be used in for instance a dial.

You can also call Domoticz.setBlock functions from the device hook.

You could do something similar in the getStatus functions, but then it’s required that a block is defined that uses
that specific device. For the device hook function that’s not necessary: It will be called on any device update received
from Domoticz.

One special functionality is the device field deviceStatus. You can set this field to a certain CSS class name. This
CSS class name will be applied to the Dashticz blocks that use this device. You could set the value of deviceStatus
based on the current device value or based on the value of another device.

Happy hacking :)

4.2. Functionality via custom.js 195

Dashticz Documentation, Release beta

196 Chapter 4. Customizations

CHAPTER 5

Tips and Tricks

Various tips and tricks will be collected here.

5.1 Dashticz security

Dashticz is not secure with it’s default installation. If you want to have access to Dashticz from outside your local
network, you should use a VPN connection, or enable user authentication for the webserver you use.

If you are using Apache you can enable user authentication as follows:

5.1.1 Step 1

First create a credentials file preferably in a location not accessible via your webbrower, for instance in /home/pi/
dashticzpasswd

In the terminal window type the following:

htpasswd -c /home/pi/dashticzpasswd admin

and choose a password. In this example you add the user ‘admin’. You can choose a different user name of course.

5.1.2 Step 2

In your dashticz folder create a .htaccess file:

cd /home/pi/dashticz
nano .htaccess

with the following content:

197

Dashticz Documentation, Release beta

AuthUserFile /home/pi/dashticzpasswd
AuthName "Please Enter Password"
AuthType Basic
Require valid-user

In the first line use the location of your credentials file you created in the first step.

If you want to be able to login from your local network without user/password authentication, then use the following
for .htacess:

AuthUserFile /home/pi/dashticzpasswd
AuthName "Please Enter Password"
AuthType Basic
<RequireAny>

Require valid-user
Require ip 192.168.1

</RequireAny>

Replace 192.168.1 with your own subnet.

Note: If you are using a reverse proxy in your local network to access Dashticz, then the Apache server thinks the
traffic comes from your local network, and will give access without asking for a password. See method 2 below for an
alternative setup.

5.1.3 Step 3

Enable the usage of local .htaccess files in Apache.

This step depends a bit on your Apache configuration. For a default Linux installation:

cd /etc/apache2
sudo nano apache2.conf

Now look for your web root folder. In the default setup this is /var/www/. In the apache2.conf file look for:

<Directory /var/www/>
Options Indexes FollowSymLinks
AllowOverride None
Require all granted

</Directory>

Replace AllowOverride None with AllowOverride All, so you should have:

<Directory /var/www/>
Options Indexes FollowSymLinks
AllowOverride All
Require all granted

</Directory>

Save the file and restart Apache:

sudo service apache2 restart

Now if you browse to Dashticz you get a prompt to enter your login credentials.

198 Chapter 5. Tips and Tricks

Dashticz Documentation, Release beta

5.2 Dashticz security (method 2)

You can choose a specific port for serving Dashticz. Then you can choose to only expose this Dashticz port to the
outside world, for instance via a reverse proxy. In my situation I have a reverse proxy on my NAS, that forwards a
certain incoming url to the dedicated Dashticz port on my Dashticz server.

5.2.1 Step 1

First create a credentials file preferably in a location not accessible via your webbrower, for instance in /home/pi/
dashticzpasswd

In the terminal window type the following:

htpasswd -c /home/pi/dashticzpasswd admin

and choose a password. In this example you add the user ‘admin’. You can choose a different user name of course.

5.2.2 Step 2

Create a new Apache2 configuration:

cd /etc/apache2/conf-available
sudo nano dashticz.conf

Add the following content to the dashticz.conf file:

Listen 8081
<VirtualHost *:8081>

DocumentRoot "/home/pi/dashticz"
</VirtualHost>

<Directory "/home/pi/dashticz">
AuthUserFile /home/pi/dashticzpasswd
AuthName "Dashticz Password"
AuthType Basic
<RequireAny>

Require valid-user
<RequireAll>

Require ip 192.168.1
Require not ip 192.168.1.16

</RequireAll>
</RequireAny>

</Directory>

With the previous example the folder /home/pi/dashticz will be served on port 8081. Choose/check your own
folder and (available) port. Apache will ask for username/password, except from your local network (192.168.1.xxx).
On my system the reverse proxy runs on 192.168.1.16. If the traffic is coming from that IP address, then the user must
be authenticated.

5.2.3 Step 3

5.2. Dashticz security (method 2) 199

Dashticz Documentation, Release beta

#Enable configuration
sudo a2enconf dashticz.conf
#Reload apache2
sudo service apache2 reload

5.3 Use of Web Fonts

Add the following to custom.js:

$('<link rel="stylesheet" type="text/css" href="//fonts.googleapis.com/css?
→˓family=Orbitron" />').appendTo('head');

Add the following to custom.css:

.webfont {
font-family : orbitron;
}

5.4 Changing alert icon colors dynamically

Assumptions:

• Today alert IDX in Domoticz=115 (find your own IDX and replace in the code below)

• Level grades (as defined in Domoticz): Level 1 - normal (no alert, GREEN), Level 2 - Light warning
(YELLOW), Level 3 - Warning (ORANGE), Level 4 - Critical (RED).

Add the following to custom.js:

function getStatus_115(block) {
var device=block.device;
if(device['Level']==1) {

block.addClass='alertnormal';
}
else if (device['Level']==2) {

block.addClass='alertlight';
}
else if (device['Level']==3) {

block.addClass='alertmedium';
}
else {

block.addClass='alerthigh';
}

}

Add the following to custom.css:

.alertnormal .col-icon {
color: green !important;

}
.alertlight .col-icon {

color: yellow !important;
}

(continues on next page)

200 Chapter 5. Tips and Tricks

Dashticz Documentation, Release beta

(continued from previous page)

.alertmedium .col-icon {
color: orange !important;

}
.alerthigh .col-icon {

color: red !important;
}

5.4. Changing alert icon colors dynamically 201

Dashticz Documentation, Release beta

202 Chapter 5. Tips and Tricks

CHAPTER 6

Release Notes

6.1 Upgrade instructions

6.1.1 v3.8.9: Dial styling

In previous versions you had to change the dial ring coloring via:

.dial .bar.primary,

.dial .fill.primary {
border-color: #d9e900 !important;

}

.dial .bar.secondary,

.dial .fill.secondary {
border-color: #26e500 !important;

}

From v3.8.9 you have to rewrite this as:

.slice.primary {
color: #d9e900

}

.slice.secondary {
color: #26e500

}

The same counts for dial rings labeled as positive or negative

Also see Blinds Custom Styling.

203

Dashticz Documentation, Release beta

6.1.2 v3.7.6: Dial values

In v3.7.6 there are some changes in the behavior of the values parameter for a dial block.

The values defined in this parameter will be added just below the main value of a dial: By default the main value will
be displayed as well.

To hide the main value, add showvalue: false to the dial block definition.

6.1.3 v3.7.3: Popup blocks and more

Note: Make a backup of the files in the custom folder when updating!

Main changes in v3.7.3 are the following:

• Improved consistency in popup windows

• Possibility to add one or more Dashticz blocks into a popup window

Both points required some code redesign. Also some cleanup actions were implemented. The main changes are
summarized below.

New blocks for ‘moon’ and ‘log’

Both blocks now can be added with there name, or by setting the type parameter. Example:

blocks['moon'] = {
width:6

}

blocks['logexample'] = {
type: 'log'

}

columns[1] = {
blocks: ['moon', 'logexample']

}

The previous method to define ‘moon’ via the btnimage parameter value moon is not supported anymore.

The ‘log’ parameter of a button is not supported anymore.

Removal of ‘old’ calendar block

Until now Dashticz supported the ‘old’ and the ‘new’ calendar block. The ‘old’ calendar block has been removed.

See newcalendar

To be able to recognize a calendar block you have to add icalurl parameter to the block definition.

Styling of popup windows

The CSS classes and default styling for popup windows changed. So if you have some custom popup styling in your
custom.css then probably you have to update this.

204 Chapter 6. Release Notes

Dashticz Documentation, Release beta

See Popup windows for additional information.

Popup windows new functionality

In the following situation a block click will trigger a new window:

• If the block is a Domoticz block (but not a switch), and the ‘graph’ parameter is not false, then Dashticz will
open a popup graph.

• The block contains an url parameter. Dashticz will open the url. The newwindow block parameter determines
how the url will be opened.

• The block contains a popup parameter. The popup parameter refers to a block parameter. Dashticz will open
the block indicated by the popup parameter in a popup window.

With the newwindow block parameter you indicate how the popup will be opened. New option ‘5’ has been added
to open the url in a new browser tab.

The ‘auto_close’ parameter will work on popups with newwindow value 1 (=new window), 2 (=modal popup) and 5
(=new tab)

New block parameter blocks

With the ‘blocks’ parameter a block acts in fact like a column definition. Example:

blocks['mypopup'] = {
blocks: [1,2,'mydial','graph_3', 'log']

}

In the previous example a block with the name ‘mypopup’ is created, consisting of two Domoticz devices, a dial, a
graph, and a log block.

You can add ‘mypopup’ to a column, or use is as value for a popup parameter:

blocks[123] = {
popup: 'mypopup'

}

In this example a block for Domoticz device 123 will have a popup block consisting of 5 other blocks.

6.1.4 v3.4.9: Custom keys in block definition

Note: Breaking changes. See notes below.

In case you have defined a block with a custom key as follows:

blocks['myblock'] = {
idx: 123,
width:4

}

then this will have the following consequences:

• The block will have the CSS class .block_myblock and not .block_123. You may have to change
something in custom.css

6.1. Upgrade instructions 205

Dashticz Documentation, Release beta

• If device 123 has subdevices, they will receive the CSS class .block_myblock_1 etc. and not .
block_123_1

• On device change the function getStatus_myblock(block) in custom.js will be called, and not
getStatus_123(block)

6.1.5 v3.4.1: Redesign block definition

Note: Breaking changes. See notes below.

Although not so visible from the outside v3.4.1 contains a significant design update on how Dashticz blocks are
managed internally.

Some advantages:

• You can use the same Domoticz ID with different block settings:

blocks['first_one'] = {
idx: 123,
width:4

}

blocks['second'] = {
idx: 123,
width:12

}

columns[1]['blocks'] = [
'first_one', 'second'

]

This will display Domoticz device <123> twice: the first one having width 4, the second one having width 12.

• Inline block definition:

columns[1]['blocks'] = [
{ idx: 123, width: 4},
{ idx: 123, width: 12}

]

This will give the same results as the previous example.

• The on and off classes will be added automatically to a switch-block. This enables auto-hide possibility in
combination with the addClass parameter

blocks[123] = {
addClass: 'myClass'

}

And in custom.css:

.myClass.off {
display: none

}

206 Chapter 6. Release Notes

Dashticz Documentation, Release beta

Block parameters

Note: Breaking change: refresh interval parameter

Setting the refresh interval of a block now has been standardized to the refresh parameter. You may have to replace
interval by refresh for some blocks. The value represents the refresh interval in seconds.

A new block parameter:

Parameter Description
addClass The CSS class name, that will be added to the block.

custom.js

Note: Breaking change: getBlock, getStatus and getChange interface in custom.js

There are changes in the function parameters for the following functions:

• getBlock_IDX

• getStatus_IDX

• getChange_IDX

These functions now receive block as parameter, containing all relevant parameters for the block.

The examples in Functionality via custom.js have been updated.

6.1.6 v3.2.0: Change in HTML template for special blocks

In the last years several special blocks have been added. However, the html templates for each block all were a bit
different. The usage of css class names was not consistent. This made maintainability difficult as well. For that reason
I decided to refactor the code towards the usage of a standard html template. In this version the following blocks have
been migrated to the new format:

• Block title

• Buttons

• Frames

• Longfonds

• News

• Public transport

• Stationclock

• Streamplayer

• Traffic

• Trafficinfo

• Train

• TV Guide

6.1. Upgrade instructions 207

Dashticz Documentation, Release beta

Block parameters

For these blocks you can set the following block parameters:

• icon: Icon name

• image: Image name. Image path is relative to the <dashticz>/img folder.

• title

• key: Unique identifier

These parameters all work in the same way. The default styling however might be different, depending on the block
type.

The following sections provide an overview of additional changes per block type.

Button

The current button parameter image has been renamed to btnimage.

A button block can have a image parameter, which defines the image to be used as icon, and a btnimage parameter.
This parameter defines the image of the button itself.

Public transport

The icon parameter of the Public transport block now must be set to the full icon name, as defined by FontAwesome.

Previous format

icon: 'train', //change: full icon name

New format:

icon: 'fas fa-train',

CSS class definitions

The CSS class definitions for each element of these blocks (block, icon, title, state) have been made consistent. This
means you might have to update the styling in your custom.css, or the classes you use in custom.js. See Special blocks

6.2 Release Notes

For Dashticz’s beta version Release Notes go to: https://dashticz.readthedocs.io/en/beta/releasenotes/index.html

For Dashticz’s master version Release Notes go to: https://dashticz.readthedocs.io/en/master/releasenotes/index.html

6.2.1 Recent changes

Fixes

• Swiper vertical scroll bar

208 Chapter 6. Release Notes

https://dashticz.readthedocs.io/en/beta/releasenotes/index.html
https://dashticz.readthedocs.io/en/master/releasenotes/index.html

Dashticz Documentation, Release beta

Code

• [Prelim] Calendar: New ical module to parse calendar data. Should solve most calendar issues, especially
related to recurring events. Select via method:2

6.2.2 V3.9.3 Beta (9-3-2022)

Enhancements

• Dial: Needle step size configurable via steps block parameter.

• Dial: For wind device, add block parameter subtype: 'windspeed' to use wind speed for needle posi-
tion instead of wind direction.

• Dial: For wind device, add block parameter subtype: 'windgust' to use wind gust for needle position
instead of wind direction.

• Dial: Up/down dials for Thermostats, Blinds and Dimmers. See Up-down dials

• Public Transport: New block parameter direction to filter on line direction number. See Public Transport

Fixes

• Public transport: Translations

• Dial: Fix min, max setpoint setting in CONFIG.js

• Garbage: Fix for Purmerend, Suez, Blink

6.2.3 V3.9.2 Beta (27-2-2022)

Enhancements

• Garbage: Added Maashorst (Uden, Volkel, Odiliapeel, Reek, Schaijk en Zeeland)

• Public transport: New block parameter show_direction to show bus line direction.

• Public transport: New block parameter lang to set language for search results (for irailbe only).

Fixes

• Garbage: Uden (new URL, same as Maashorst)

• Garbage: Rova (for some zipcodes)

Code

• Switched to worker-timers, to improve background refresh

• Prevent caching index.html

• Update caching behavior

6.2. Release Notes 209

Dashticz Documentation, Release beta

6.2.4 V3.9.1 Beta (13-2-2022)

Code

• Update development dependencies

• Update FontAwesome, Popper, IRO and Swiper to latest versions

6.2.5 V3.9.0 Beta (10-2-2022)

Beta version derived from v3.9 Master

6.2.6 v3.9 Master (10-2-2022)

Enhancements

• Trafficinfo: Add block parameters showempty and showemptyroads to control what to show in case of no
announcements. See Traffic info

Fixes

• Trafficinfo: Bug fixes (wrong road name if no announcements)

• P1 Smart Meter: Display NettUsage as default value (=Usage-Delivery)

6.2.7 v3.8.11 Beta (28-1-2022)

Note: Some changes in dial styling, especially dial font sizes.

Enhancements

• New block type ‘Door Lock Inverted’

• Dial: Selector menu can show title. See Selector switch

6.2.8 v3.8.10 Beta (23-1-2022)

Note: Public Transport changed. See Public Transport.

Note: Dial ring styling changed. See v3.8.9: Dial styling.

210 Chapter 6. Release Notes

Dashticz Documentation, Release beta

Enhancements

• Special blocks: Add class empty in case the special block is empty. Applicable to alarmmeldingen, calendar,
traffic, trafficinfo and train.

• Graph: Improvement in customized axes styling. See Styling of X- and Y- axes

• Publictransport: Added ‘ovapi’ and ‘treinen’ as providers. Removed 9292, mobiliteit and VVS (non working
APIs). Changed rendering. For all changes see Public Transport.

Fixes

• Changed dial styling for ring and blinds text. See Custom Styling.

• Dial: P1 decimals configurable via decimals block parameter.

• Calendar: Fixed issues with some recurring events in ical modules (PHP5 as well as PHP7 version)

6.2.9 v3.8.9 Beta (23-12-2021)

Note: Your images in buttons now might scale to the full block width. This is a side effect of the fix of the moon
scaling. Reduce the block width in case your image is too wide.

Enhancements

• Dial: Support for blinds. See Blinds

• Frame: Add block parameters scaletofit and aspectratio to automatically scale the frame content to
the block width. See Frames

Fixes

• Moon image scaling

6.2.10 v3.8.8 Beta (17-12-2021)

Fixes

• Garbage: Recycleapp (BE)

• Dials: Fix for so called splitdial with 0 not at top. For instance: min=-10 and max=50

6.2.11 v3.8.7 Beta (5-12-2021)

Note: Weather icons changed. See Icons

Note: CSS styling for calendar events changed. See Event styling

6.2. Release Notes 211

Dashticz Documentation, Release beta

Enhancements

• Calendar: eventClasses block parameter to customize styling based on event description. See Event styling

• Weather: New block parameter icons to set weather icons to ‘line’, ‘linestatic’, ‘fill’,’static’ or ‘meteo’. See
Icons

• New upgrade scripts in Makefile (Documentation to be updated)

Fixes

• Garbage: Recycleapp (BE), Avalex, Suez

6.2.12 v3.8.6 Beta (22-10-2021)

Enhancements

• Graphs: Now you can also display switch information in your graphs

Fixes

• Graphs: Fixes in y-axes labeling

6.2.13 v3.8.5 Beta (15-10-2021)

Fixes

• Make door lock switchable.

• Garbage: Venlo (new website)

• Custom function getStatus will be called twice. Second time after block creation (fixed)

• Weather block: fixed rain rate in hourly forecast

• Graph: Fix for displaying energy values, for instance for P1 devices

6.2.14 v3.8.4 Beta (13-8-2021)

Fixes

• Calendar fixes (recurring events, multiple events on same moment)

• ANWB traffic info: Change API v1 to v2

• Garbage: Fix for Rova

212 Chapter 6. Release Notes

Dashticz Documentation, Release beta

6.2.15 v3.8.3 Beta (29-5-2021)

Enhancements

• Weather: Added layout 4 option. See Weather forecast

• Weather: Colored icons (animated weather icons only). See Weather forecast

• Weather: show/hide wind dial and wind info, Wind as Beaufort, show/hide first forecast card

Fixes

• Weather: Changed styling of current weather block (center the three parts)

• Weather: Fix styling of forecast block for white Dashticz template

• Merged changes from master v3.8.0.1 and v3.8.0.2

Code

• Bump Swiper.js from 5.4.5 to 6.4.2

6.2.16 v3.8.2 Beta (24-4-2021)

Note: Breaking changes: New weather block.

Enhancements

• Rewrite of the weather block. See Weather forecast.

6.2.17 v3.8.1 Beta (14-4-2021)

Enhancements

• Change in auto swipe behavior. See Auto swipe, auto slide.

6.2.18 v3.8.0 Beta (10-4-2021)

Enhancements

• Auto slide timer configurable per screen via screen parameter auto_slide_page

• Fix for columns without block parameter

• Fix for icon size for special blocks on screen width < 975 pixels

6.2. Release Notes 213

Dashticz Documentation, Release beta

6.2.19 v3.8.0.2 Master (14-5-2021)

Fixes

• Fix potential error in startup behavior

6.2.20 v3.8.0.1 Master (26-4-2021)

Fixes

• Standby: Prevent click to activate a Dashticz block while in standby

6.2.21 v3.8 Master (9-4-2021)

Master version derived from v3.7.7 Beta.

If your current Dashticz version is lower than v3.7.2 then before upgrading make a copy of custom/custom.css and
custom/custom.js first!

See the upgrade instructions at v3.7.2 below.

6.2.22 v3.7.7 Beta (8-4-2021)

Fixes

• Garbage: Repaired Area, EDG, Groningen, Meerlanden

Enhancements

• P1 Smart Meter: Computed fields ‘NettUsage’, ‘NettCounterToday’ and ‘NettCounter’ which can be used as
value in dials.

• Garbage: Set block parameter ‘ignoressl’ to true to disable https SSL checks.

Code

• Update of the external npm modules

6.2.23 v3.7.6 Beta (12-3-2021)

Enhancements

Note: Breaking changes. See v3.7.6: Dial values for update instuctions

• Several dial enhancements. See Dial values

• Device hook: Function in custom.js which is called on every device update. See Device hook

214 Chapter 6. Release Notes

Dashticz Documentation, Release beta

Fixes

• Blinds: Support textOn and textOff block parameters

6.2.24 v3.7.5 Beta (28-2-2021)

Enhancements

• OWM widgets. See OWM widgets

Fixes

• Dials: Fix dimmer decimals

• Dials: Improved formatting

• Dials: Improved error handling

• Dials: Support setpoint for default dial

6.2.25 v3.7.4 Beta (20-2-2021)

Fixes

• Fix for Spotify block (removed the additional dummy block)

• Spotify: Improved playlist popup layout

• Improved error handling in PHP modules for calendar and garbage

• Dials: Resize disabled (to prevent size changes after first rendering)

• Garbage: block with company: ‘ical’ will now be detected correctly as Garbage block instead of Calendar

• Garbage: recycleapp.be

• Colorpicker: Add support for Hue RGBWW device by adding mode:1 block parameter

Enhancements

• Dial: block parameter iconSwitch to set the fontawesome icon to use for an on/off switch

• Dials: Support added for text devices and for dials without device.

• Dials: Text devices will be recognized correctly in default dial as well, meaning you can combine several text
devices into one dial.

• Dials: Set number of decimals with decimals parameter

• Garbage will be sorted in the same order as garbage block parameter (or config['garbage'])

6.2.26 v3.7.3 beta (24-1-2021)

Note: Make a backup of CONFIG.js, custom.css and custom.js

6.2. Release Notes 215

Dashticz Documentation, Release beta

Code

• Redesign internal block framework

• Removed old calendar block ‘icalendar’ and calendarurl config setting

Enhancements

• Calendar: (New calendar block, layout 0 and 1 only) The class ‘agenda-empty’ is applied to the calendar block
in case there are no appointments.

• Battery Level indicator for Domoticz devices. Battery icon will be displayed when the battery level is below
batteryThreshold. See Battery level.

• TV Guide: Block parameter layout has been added, to display the TV guide with/without channel name. See
TV Guide

• Graph: Block parameter labels has been added, to rename the device names that are used in groupByDevice
graphs.

Fixes

• Bugfix security panel lock screen default setting

• Show last update time when last_update is set as block parameter

• Graph: Fix for block parameter aggregate as array

• Calendar: Update icalparser for PHP8 compatibility

6.2.27 3.7.2 Beta (27-12-2020)

Note: Update instructions.

I’ve removed custom/custom.css and custom/custom.js from the Dashticz repository, because these are user configu-
ration files, and should not be part of the Dashticz repository.

However, that means this update cannot be installed with git pull directly, because then git will report an error if
you have modified one or both files.

To solve this, first make a backup of these two files:

mv custom/custom.js custom/custom.js.bak
mv custom/custom.css custom/custom.css.bak

In case you use the custom_2 folder, repeat these steps for that folder:

mv custom_2/custom.js custom_2/custom.js.bak
mv custom_2/custom.css custom_2/custom.css.bak

Then update to the latest version as usual:

git pull

And restore your backups:

216 Chapter 6. Release Notes

Dashticz Documentation, Release beta

mv custom/custom.js.bak custom/custom.js
mv custom/custom.css.bak custom/custom.css

And for the custom_2 folder:

mv custom_2/custom.js.bak custom_2/custom.js
mv custom_2/custom.css.bak custom_2/custom.css

You only have to do this once: Next updates can be installed with a normal ‘git pull’

Enhancements

• Calendar: New block parameter emptytext to define the text to show where there are no calendar appoint-
ments. Only works for the new calendar block. See newcalendar

• Custom graph: aggregate parameter can be an array to specify different aggregation methods per data element.
See GroupBy

• Graph: New parameters axisRight to show the first Y axis on the right (default is false), and
axisAlternating to show Y axes alternating left/right (default: true).

• Support for device (sub)type Managed Counter

• Flipclock: New block parameters showSeconds (true or false) and clockFace (12 or 24)

• Security panel: New block parameters (decorate, headerText, footerText, scale). See Domoticz
Security Panel

Fixes

• Graph: Fix for data acquistion day graph gas device.

• Colorpicker: Some fixes in warm white/cold white color setting.

• Improved styling of modal popup windows.

6.2.28 3.7.1 Beta (19-12-2020)

Enhancements

• Graph: Enable graphs for Lux device type

• Popup window: Add newwindow: 5 to open an url as image instead of iframe (doc to be updated)

• Clock: New Hayman clock. Add block ‘haymanclock’ to a column, or use type: 'haymanclock' in
your block definition.

• Clock: New basicclock, which is the same as the normal clock, but then responsive. (scales with the width)

• Clock parameters: haymanclock, flipclock, stationclock and basicclock all support the block parameters size
to set the width of the clock and the parameter scale to scale down the width with a relative factor (scale:
0.6)

6.2. Release Notes 217

Dashticz Documentation, Release beta

6.2.29 3.7.0 Beta (13-12-2020)

Code

• NPM update, code formatting

6.2.30 3.7 Master (13-12-2020)

Master version derived from 3.6.9 Beta

6.2.31 3.6.9 Beta (10-12-2020)

Enhancements

• Garbage: New garbage block parameter maxdays to set the number of days to show the garbage collection
info (2 means today and tomorrow)

• Stationclock: New block parameter size to set the size of the clock. See Station Clock

• Stationclock: New configuration parameters. See Station Clock

Fixes

• Garbage: Fix DeAfvalApp (https instead of http)

• Garbage: Add avri as garbage company

• Garbage: add layout as block parameter. Use layout: 0 to format the garbage rows as one string and
layout: 1 to use table layout.

• Garbage: Fix Afvalwijzer 2021 data

• Prevent :hover effect for touch devices

6.2.32 3.6.8 Beta (27-11-2020)

Enhancements

• Garbage: New providers Suez (Arnhem), Blink (Asten, Deurne, Gemert-Bakel, Heeze-Leende, Helmond, Laar-
beek, Nuenen, Someren), Purmerend

• Garbage: New provider afvalstoffendienst

• Garbage: New provider GAD

• Colorpicker: Add support for WW dimmers (Philips Hue)

• Chart: For custom graphs you can define the icon to use for each graph button. See Custom graphs

• Timegraph: New special block to define a moving time graph. See Timegraph

• Garbage: Additional styling. See Styling

• Garbage: New block parameter date_separator to configure the text between garbage type and date

• Garbage: Format as table. See Styling

218 Chapter 6. Release Notes

Dashticz Documentation, Release beta

Fixes

• Calendar: Add ‘method:0’ to your calendar block definition in case you experience issues with recurring events.
Only works for the new calendar block. See newcalendar

• Fix for X10 security motion device.

6.2.33 3.6.7 Beta (4-11-2020)

Update of the Garbage module. See Upgrade from Dashtcz 3.6.6 and earlier for upgrade information.

6.2.34 3.6.6 Beta (30-10-2020)

Enhancements

• Dashticz URL parameters. See Dashticz URL parameters

• Dials: Set the block parameter animation to true or false to enable/disable dial animations.

• Add timeout CSS class to Domoticz devices in the timeout state. See Styling

Fixes

• Garbage: Fix for Mijnafvalwijzer on iOS

• Disable Dashticz refresh if config[‘dashticz_refresh’] is 0

• Bugfix initialization code

6.2.35 3.6.5 Beta (22-10-2020)

Fixes

• Button: newwindow: 3 handling is fixed.

• Scenes: Switch always on

• Switched to an alternative server to provide the covid-19 data

Enhancements

• Button, special blocks: Initiate the url parameter as POST request by setting newwindow: 4

• Add support for Domoticz x10 security sensor

• Dial: Combine data from several devices. See genericdial

6.2.36 3.6.4 Beta (6-10-2020)

Fixes

• PV Output Temp device.

6.2. Release Notes 219

Dashticz Documentation, Release beta

Update notes

• The icon for PV Output blocks are not automatically set to ‘fas fa-sun’ anymore. You still can do this manually
in a block definition. In a future version I’ll improve the default settings for Domoticz device types.

6.2.37 3.6.3 Beta

Enhancements

• Set config setting security_panel_lock to 2 to activate security panel lock in ‘Armed Home’ mode as
well.

• Dial type now enabled for most devices. See genericdial

Fixes

• Remove scroll bar of the modal security panel (security panel lock)

• New config setting use_cors to enable CORS proxy for OWM. Set to true on Android 4.4.2.

• Garbage: recycleapp

6.2.38 3.6.2 Beta

Fixes

• Fix for graph issues in 3.6

6.2.39 3.6.1 Beta

Enhancements

• Custom HTML block. See HTML custom block

6.2.40 3.6.0 Beta

Beta version, same as 3.6 master.

Code

• Update of the external js modules

6.2.41 3.6 Master

Enhancements

• New Dashticz config parameter ‘swiper_touch_move’ to disable/enable swiping the screen on touch

• Graph: The ‘today’ button now shows the full day data. The range ‘day’still exists as well, which still can be
used in custom graphs.

220 Chapter 6. Release Notes

Dashticz Documentation, Release beta

• Add support for device with subtype ‘Current’

• Popup graphs enabled by default for most block types. To disable a popup graph, add graph: false to the
block definition.

Code

• Update FontAwesome to 5.14.0

Fixes

• Camera block

• Garbage: Ophaalkalender (BE) doesn’t work anymore. It has been replaced by recycleapp.

• Security panel home symbol.

• Garbage: Meerlanden switched to ximmio as garbage data provider

• Garbage: Fixed method to retrieve data from mijnafvalwijzer

• Fixed use_favorites config setting. Changed default to false, meaning all devices will be available for Dashticz.

• Remove CORS for OWM data

6.2.42 3.5.2 Beta

Enhancements

• New colorpicker for RGB devices, including support for whites. The no_rgb setting is absolete. See RGB
Color picker

Fixes

• Fix for Omrin garbage provider

• Fix for Venlo garbage provider

Code

• Update to jquery 3.5.1

6.2.43 3.5.1 Beta

Enhancements

• Domoticz textblocks, traffic, trafficinfo, longfonds and public transport now support the block parameters
url, newwindow, forcerefresh and password giving it the same behavior as a button if you want
to open an url on click.

Fixes

• Change traffic info provider for traffic block

6.2. Release Notes 221

Dashticz Documentation, Release beta

6.2.44 3.5.0 Beta

Same as 3.5 Master

6.2.45 3.5 Master

New master release derived from 3.4.10 beta.

See the release notes for the beta releases below for all changes.

6.2.46 3.4.10 (Beta) (7-6-2020)

Enhancements

• Japanese language support (preliminary)

• Improved Camera block . See Cameras

Fixes

• Stop called twice for Blinds stop button

• Improve Dial representation on Android devices

• Improved graph groupBy function

6.2.47 3.4.9.1 (Beta) (26-5-2020)

Fixes

• Several bug fixes

6.2.48 3.4.9 (Beta) (25-5-2020)

Fixes

• Improved number formatting for graph header and tooltip. See Number format

• Block definition with custom keys: consistency in block selection for subdevices, CSS class application
and function names in custom.js. This may result in a breaking change. See v3.4.9: Custom keys in block
definition

6.2.49 3.4.8 (Beta) (20-5-2020)

Enhancements

• Improved trafficinfo layout

Fixes

• IE11 support

• iOS9 support

Code

• Standardized formatting of source code

222 Chapter 6. Release Notes

Dashticz Documentation, Release beta

• Removed eslint warnings (first batch)

6.2.50 3.4.7 (Beta) (18-5-2020)

Enhancements

• Support for Dials. See Dial

Fixes

• Refresh of graph while in standby

6.2.51 3.4.6 (Beta) (13-5-2020)

Enhancements

• Enable graphs for Voltage and Distance devices

• Parameter timeformat to configure time format for ‘alarmmeldingen’. See Alarmmeldingen

• TV guide (Dutch: tvgids) made clickable

• More options to customize the graph header. See customHeader

Fixes

• Fix for ANWB Traffic Info (new API)

• Fix for recurring calendar events (older than 3 year, without end date)

6.2.52 3.4.5 (Beta) (23-4-2020)

Fixes

• Garbage: Cure moved to ‘mijnafvalwijzer’

• Synchronization Domoticz security panel state

• Bug fix popup chart refresh

6.2.53 3.4.4 (Beta) (18-4-2020)

Enhancements

• Add ‘Current’ Domoticz device type.

• Improved security panel. See <todo>

Fixes

• Fix for refresh of Scenes/Groups and some temperature sensors

6.2.54 3.4.3 (Beta) (9-4-2020)

Enhancements

• New calendar layout. See newcalendar

Fixes

6.2. Release Notes 223

Dashticz Documentation, Release beta

• Group/scene status refresh

• Unit parameter, which can be used for formatting the value of some Domoticz devices. See Formatting

6.2.55 3.4.2 (Beta) (3-4-2020)

Enhancements

• Add dewpoint block for TempHumBar devices

• Corona block type

• Custom header for graph blocks. See customHeader

• Camera block. See Cameras

Fixes

• Calendar recurring events (experimental)

Internal

• Refactoring blocktypes

6.2.56 3.4.1 (Beta)

Note: Breaking changes. See v3.4.1: Redesign block definition for update instuctions

Redesign

• Domoticz blocks: inline blocks. Use idx as parameter in your block definition to indicate the block is a
domoticz device. See v3.4.1: Redesign block definition

Enhancements

• Support for showing a graph more than once on the dashboard.

• Support for RGBWZ devices

• Omrin garbage company

• Calendar: Optionally display start time only by setting startonly block parameter

• New block parameter password to password protect switches, buttons, thermostats, sliders.

• Filter parameter for the news block. Define as block parameter. Example:

blocks['my_news'] {
feed: 'http://www.nu.nl/rss/Algemeen',
filter : '5 items', // to only show the 5 latest news items, or:
filter: '2 days', // to only show news items of the last 2 days, or:
filter: '1 month', // to only show news items from last month

}

• New special block: alarmmeldingen (Dutch). See Alarmmeldingen

• Update other blocks from custom.js functions by calling Dashticz.setBlock. See Change value
of another block

Fixes

224 Chapter 6. Release Notes

Dashticz Documentation, Release beta

• Requests to Domoticz will not be send via a websocket connection (not reliable)

• Fix for Evo devices

• Improved the height adjustment of a news block with inline images

• Fix for updating devices via getStatus_idx in custom.js

• Fix for initial update of block defined by getBlock_<idx>() in custom.js

6.2.57 3.4.0 Beta (8-2-2020)

Enhancements

• Websocket interface for Domoticz version > 4.11000 to receive instant device updates. See Websocket
connection

• The News block will show the inline images. By setting the news block parameter ‘showimages: false’ the
inline images will be hidden. See Config Settings

• graph and multigraph have been combined into the same graph block. See Graphs.

In case you update from 3.3.5 beta: The parameter multigraphTypes has been replaced by graphTypes

Optimizations

• Dashticz will only receive the updates for devices that changed since the previous update. This will in-
crease responsiveness. In the previous version Dashticz received all device info at every update (default 5
second cycle).

6.2.58 3.3.5 Beta (28-1-2020)

Fixes

• Garbage Uden

• Restored PHP5 compatible ical library next to the PHP7 library. The PHP5 library is selected automatically
on systems with PHP version lower than 7.1. The PHP5 library doesn’t show yearly recurring events
correctly.

6.2.59 3.3.4 Beta (22-1-2020)

Enhancements:

• Multigraph functionality. See Graphs.

6.2.60 3.3.3.1 Master (4-2-2020)

Fixes

• Garbage Uden

• Reenabled PHP5 calendar module

6.2. Release Notes 225

Dashticz Documentation, Release beta

6.2.61 3.3.3 Master (22-1-2020)

Fixes

• New PHP ical library to solve issue with recurring events. Note: PHP 7.1 or higher is required.

6.2.62 3.3.2 Master (18-1-2020)

Master version derived from 3.3.1 beta.

If you are upgrading from a previous master version please read v3.2.0: Change in HTML template for special blocks.

Additional fixes

• Fix standby screen in case of single screen.

6.2.63 3.3.1 Beta (13-1-2020)

Enhancements

• Complete dimmer block is clickable (not just the icon)

Fixes

• Multiple stationclocks

• Background fill complete screen in case of single screen

• Add dimmer for RGBWWZ devices

• TwenteMilieu garbage collection

• Bar-afvalbeheer garbage collection (for Barendrecht, Rhoon). Use ‘barafvalbeheer’ as garbage_company.

6.2.64 3.3.0 Beta (5-1-2020)

Enhancements

• Evohome support. See Evohome

Fixes

• Improved error handling

• Improved handling of chart data

• Almere garbage

• Login screen background image

6.2.65 3.2.1 (10-12-2019)

Enhancements

• Addition of special block ‘secpanel’ which adds a Domoticz like security panel. See Domoticz Security
Panel

Fixes

• Swiper transition effect

226 Chapter 6. Release Notes

Dashticz Documentation, Release beta

• Update to latest jQuery version to solve security alert

6.2.66 3.2.0

Warning: Breaking changes

Main change:

• Standardization of the html template for special blocks. See v3.2.0: Change in HTML template for special
blocks

Other changes:

• Enable swiper for mobile devices

• Update to swiper 5.2.0. Added the config parameters vertical_scroll and enable_swiper to
control swiping and scrolling behavior. See Config parameters

• Bundle most external dependencies (webpack, babel, package.json)

Fixes

• Calendar: Improved handling for recurring events

• Blinds: Fix for custom icons

6.2.67 3.1.2 (26-10-2019)

Enhancements

• Improved calendar layout for full day events. Added timezone adjust parameters.

Fixes

• Fix for loading Dashticz without external network

• Load Sonarr images via CORS proxy

6.2.68 3.1.1 (15-10-2019)

Enhancements

• Show calendar with table formatting by setting blockparameter calFormat:1. See calTable

• Session Time Out option

Fixes

• Graph for barometer device

• Almere garbage provider

• Wind speed unit interpretation in case of non default Domoticz setting

• Protect parameter for dimmers.

• Removal of ES6 dependency (introduced by the graph update)

Upgrading from earlier versions:

6.2. Release Notes 227

Dashticz Documentation, Release beta

buttons: Use the btnimage parameter instead of the image parameter. The parameter isimage is not used anymore.

6.2.69 3.1.0 (18-9-2019)

Enhancements

• New config setting 'start_page' to set Dashticz start page number

• New parameter 'scrollbars' to set scrollbars in frame. See Frames

• New graph module. It’s not completely backwards compatible. Especialy styling will be different. See
Graphs

Fixes

• Faster initial display of the Dashticz dashboard.

6.2.70 3.0.6 (28-8-2019)

Enhancements

• OpenWeatherMap module: support for using the city id as city name

• Icon/image options for blocktitles

Fixes

• Docker PHP timezone

• News update in standby

• Robustness install script and makefile

• Auto restart docker container after reboot

• Documentation updates (Thanks to HansieNL)

6.2.71 3.0.5 (4-8-2019)

• Update of documentation.

• Improvements in the automatic installation script.

6.2.72 3.0.4 (1-8-2019)

Main changes:

• New Domoticz Github location: https://github.com/Dashticz/dashticz

• New graph options to set the graph appearance. See Graphs.

Fixes:

• OWM Weather layout

228 Chapter 6. Release Notes

https://github.com/Dashticz/dashticz

Dashticz Documentation, Release beta

6.2.73 3.0.3 (20-7-2019)

Main changes:

• Fixed the broken Spotify module

• Improved layout (icon size for certain screen widths)

6.2.74 3.0.2 (19-7-2019)

Main changes:

• New block parameters (textOn, textOff, imageOn, imageOff, iconOn, iconOff) to control the display of
block text, icons and images depending on the device state.

6.2.75 3.0.1 (25-6-2019)

Main changes (thanks to Steven):

• New special block: Traffic information based on providers, ANWB is the first one. See Traffic info.

• Additional filter options for the public transport module. See Public Transport.

Fixes:

• Update of the installation script. See Automatic install

6.2.76 3.0.0 (13-6-2019)

This is the first Dashticz v3 release.

Main change: New Domoticz Github location: https://github.com/dashticzv3/dashticz_v3

New functionality:

• Change in forcerefresh parameter of a button to support cheap Chinese webcams.

• Support for TempBaro device

• Sizing the y-axis of the graph to relevant data

• Adding possibility to draw graph data for Qubino ZMNHTDx Smart meter

• Add bar graph type option.

• Streamplayer: Add class when in playing state to enable styling via custom.css

• Radio streaming image (radio-streaming.png)

Fixes:

• Make index2.html consistent with index.html

• Streamplayer error handling

6.2. Release Notes 229

https://github.com/dashticzv3/dashticz_v3

Dashticz Documentation, Release beta

6.2.77 2.5.9 (11-3-2019)

New functionality:

• Caching prevention mechanism also applied to button popup frame (forcerefresh parameter)

• Added Air Quality as graph type (and CO2 as graph property)

• Support of RGB dimmers (RGBW and RGBWW dimmers were supported already)

• Added confirmation option for switches (See confirmation parameter in Domoticz blocks)

Small fix:

• TwenteMilieu garbage pickup dates

6.2.78 2.5.8 (8-3-2019)

Small fixes:

• Prevent caching of the version info.

6.2.79 2.5.6 and 2.5.7

• Graph improvements. See Graphs for usage description.

– Selection of values you want to show in a graph via the graphTypes parameter. See Block parameters.

– Support for the title and width parameter in a graph block.

• Additional mechanism to prevent caching of images in a button via the forcerefresh parameter. See
forcerefresh.

• Change background color for active ‘slide’ button. See Slide button.

• Flash on change. See Flash on change.

If you have defined the flash parameter for a device-block, then the block will flash on change. The formatting
of the flash can be modified via the class .blockchange in your custom.css.

The parameter config['blink_color'] is (temporarily?) not used anymore. (reason: the apply back-
ground mechanism didn’t work for non-touch devices)

• Improved layout of blinds

• Update of Romanian language

• Update to FontAwesome 5.7.2

• Fix for some RFX meters (incl. water meter)

230 Chapter 6. Release Notes

CHAPTER 7

Troubleshooting

7.1 Connection

This sections addresses several connection issues

7.1.1 Network time-out errors

Description

Dashticz in most cases won’t load, or loads partially. DevTools network tab shows 408 errors.

Applicability

Dashticz server runs in a Docker container. You are using a Pi Raspbian 10 (Buster)

Check this with:

cat /etc/os-release

Solution

There is an incompatibility issue between one the libraries. You can fix this by executing the following commands:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 04EE7237B7D453EC
→˓648ACFD622F3D138
echo "deb http://deb.debian.org/debian buster-backports main" | sudo tee -a /etc/apt/
→˓sources.list.d/buster-backports.list
sudo apt update
sudo apt install -t buster-backports libseccomp2

After this stop and start the Docker container by executing the following commands in the Dashticz folder on your PI:

231

Dashticz Documentation, Release beta

make stop
make start

7.2 Docker

In case you tried to install Dashticz several times via the automatic install script, you might end in having multiple
Dashticz instances in parallel. The sections below can help in cleaning up.

To see all docker containers:

sudo docker ps

This will give output similar as:

CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES
500c42ae47eb dtv3-8083 "docker-php-entrypoi..." 3 weeks ago
→˓ Up 2 weeks 0.0.0.0:8083->80/tcp dtv3-8083
af0cd4278a60 dtv3-8082 "docker-php-entrypoi..." 3 weeks ago
→˓ Up 2 weeks 0.0.0.0:8082->80/tcp dtv3-8082

In this example you see there are two Dashticz containers running, on port 8082 and port 8083.

To stop the container with name dtv3-8083, which is running on port 8083:

sudo docker stop -t 5 dtv3-8083

The -t 5 parameter will give the container 5 seconds to gracefully shut down.

After this you have an unused, stopped image dtv3-8083.

To get an overview of all images:

sudo docker images

This will show something like:

REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> a5d13a69533b 3 weeks ago 414MB
dtv3-8082 latest 5c0cc9bf78e7 3 weeks ago 414MB
dtv3-8083 latest 5c0cc9bf78e7 3 weeks ago 414MB
dtv3-8084 latest 5c0cc9bf78e7 3 weeks ago 414MB
php apache 5e1d7ed3b92a 5 weeks ago 414MB
hello-world latest fce289e99eb9 16 months ago 1.84kB

To remove all unused containers and images:

sudo docker system prune

You will see a prompt, to which you can answer Y:

WARNING! This will remove:
- all stopped containers
- all networks not used by at least one container
- all dangling images
- all dangling build cache

(continues on next page)

232 Chapter 7. Troubleshooting

Dashticz Documentation, Release beta

(continued from previous page)

Are you sure you want to continue? [y/N] Y
Deleted Containers:
8140945ab5e770297a9b89751d3d8c303ca1ad2702dbaf1b6b68e6b1c6266aca
394f7f28dc9a26336a17534f539061a49caf624b090f0174620412472146e932
c4f8f460f86ee27a82090c15c070a66bf8a2763f430c8d534301c54ba585e62c
4401d69b78159b14e0f618758d2a547da34e2d9709ab661be51cedfc66774537

Deleted Images:
deleted: sha256:a5d13a69533bc8695fbd6feb0d094462d2b5a6d3d89256cd77c6f4b71c82271d
deleted: sha256:4db803ea9cd4b5e91e9ea3fa0746707aa3bbe6138f02083aa49aec2e6e59b6bb
deleted: sha256:36335a64948142f427dd6b94808682d7e49e4e252fdcd73dfa4f347f78513412

You can check the results with sudo docker ps and sudo docker images

If you want to change the port number of a running Dashticz container:

Switch to the Dashticz root folder:

cd <dashticz>

If you followed the automatic install script, there will be Makefile.ini file, with the following content:

APP=dtv3-8084
PORT=8084

To stop the current container:

make stop

Edit Makefile.ini, and change the PORT number, and APP name (the last one is not really needed, but makes life
easier):

nano Makefile.ini

Then restart the container:

make start

And voila, you now have a Dashticz container running on a new port.

More useful Docker commands on:

https://linuxize.com/post/how-to-remove-docker-images-containers-volumes-and-networks/
#remove-one-or-more-containers

7.3 Domoticz blocks

This sections addresses several issues related to displaying Domoticz blocks

7.3.1 Domoticz block not visible in Dashticz

There are a few possible causes

7.3. Domoticz blocks 233

https://linuxize.com/post/how-to-remove-docker-images-containers-volumes-and-networks/#remove-one-or-more-containers
https://linuxize.com/post/how-to-remove-docker-images-containers-volumes-and-networks/#remove-one-or-more-containers

Dashticz Documentation, Release beta

use_favorites

In CONFIG.js you have CONFIG['use_favorites']=1, while you did not mark your device as favorite in
Domoticz

Solution:

Set CONFIG['use_favorites']=0 in CONFIG.js or mark your device as favorite in Domoticz

device id incorrect

Check that your device id actually exists in Domoticz

Room plan

If you make use of a room plan in Dashticz, then check that you’ve added the device to the room plan in Domoticz.

User rights

If you’ve configured a specific Domoticz user for Dashticz, then check that this Domoticz user has access to the device.

Support

Describe your issue in the Dashticz forum https://www.domoticz.com/forum/viewforum.php?f=67

Include the Domoticz json device description, which you can obtain via the following link:

http://domoticz ip:port/json.htm?type=devices&rid=123

Fill in your domoticz ip and port. Replace 123 with your device id.

234 Chapter 7. Troubleshooting

https://www.domoticz.com/forum/viewforum.php?f=67

CHAPTER 8

For Developers

8.1 Code

All on Github.

8.1.1 Development environment

I prefer to use Visuals Studio Code.

8.1.2 Source code

In general the ‘rules’ are:

• ES5 compliant

• Styling if possible via creative.css

• Server code PHP 5 compliant

• use ‘prettier’ for code formatting

• eslint should give no warnings

Some users still have a ES5 browser, like old Android tablets. In the past I used the ‘ const’ keyword a few times. This
resulted in complaints.

For ES5 vs ES6 see for instance: http://es6-features.org

We could switch to ES6, but then probably we have to start using Babel as well, to transpile back to ES5. This is
something I would like to prevent, because it makes the develop/build environment a bit more demanding.

Guidelines:

• No ES6 syntax, like ‘const’, ‘let’, arrow functions, class keyword, object spread, Promise.

• No synchronous AJAX calls.

235

http://es6-features.org

Dashticz Documentation, Release beta

• jQuery promises may be used.

8.1.3 Dependencies

Most external libraries are managed via npm and bundled with Webpack. If you need to update the bundle, follow the
following steps.

1. Install node

2. Install the dependencies

npm install

3. Build the bundle

npm run build

The sources for the bundle can be found in src/ These files will be transpiled with Babel to ES5.

The Swiper library is in ES6 format, and will be transpiled to ES5 as well. See babel.config.js for the config-
uration.

The regular Dashticz files will NOT be transpiled: They should be in ES5 format.

jQuery 3.4.1

In December 2019 Dashticz was upgraded from jQuery 2.2.4 to jQuery 3.4.1, because of a reported security vulnera-
bility in jQuery 2.2.4. Migration is checked via jquery-migrate plugin, which can be enabled in src/index.js.

The spectrum-colorpicker is not fully compatible with jQuery 3. The jquery-migrate plugin generates warnings in the
console if the jquery-migrate plugin is enabled.

8.1.4 Design

Since v3.2.0 a standard component will be used for most special blocks. All blocks are loaded by js/dashticz.js.
The source code for each block can be found in the js/components folder.

If you want to add a new block with the name ‘myblock’, then follow the following steps:

Create the file js/components/myblock.js. A minimal implementation should contain the following:

var DT_myblock = {
name: "myblock",
run: function (me) {

//this function will be called after the component has been initialized and
→˓has been mounted into the DOM.

//me.mountPoint: Mountpoint of the container (dt_block)
//For basic usage you will add additional code to $(me.mountPoint + ' .dt_

→˓state')
//me.block: Reference to the block definition in CONFIG.js

}
}

Dashticz.register(DT_myblock); //Don't forget to register the block

Add 'myblock' to the components variable at the start of js/dashticz.js

An example of a more extensive implementation:

236 Chapter 8. For Developers

Dashticz Documentation, Release beta

var DT_myblock = {
name: "myblock",
canHandle: function (block, key) {

//returns a boolean to indicate whether the block can be handled by this
→˓component

//key is the identifier (string) that is used in the column definition to
→˓select a block.

//In case an object is provided in the column definitions (like buttons,
→˓frames) then key is undefined

},
init: function () {

//Will be called for initialization
//returns a jquery deferred (similar to a Promise)

},
defaultCfg: { //All optional. defaultCfg can also be a function and then will

→˓receive block as parameter.
icon: 'fas fa-newspaper', // string to define the default icon
containerClass: function (block) { //function returning a string containing

→˓class names that will be added to the block
return 'hover'

}, //Or:
containerClass: 'hover',
containerExtra: function (block) { //function or string returning additional

→˓settings for the container HTML element (dt_block)
return (block && block.maxheight) ? ' style="max-height:' + block.

→˓maxheight + 'px;overflow:hidden;"' : ''
}

},
defaultContent: function (me) { //Optional. function (or string) returning the

→˓static content of dt_state
return '<ul id="newsTicker"></div>'

},
run: function (me) {

//this function will be called after the component has been initialized and
→˓has been mounted into the DOM.

//me.mountPoint: Mountpoint of the container (dt_block)
//For basic usage you will add additional code to $(me.mountPoint + ' .dt_

→˓state')
//me.block: Reference to the block definition in CONFIG.js

},
refresh: function (me) {

// if me.block.refresh is defined, and this function exists, then this
→˓function will be called every <me.block.refresh> seconds.

}
}

Dashticz.register(DT_myblock); //Don't forget to register the block

Add 'myblock' to the components variable at the start of js/dashticz.js

The following key words are reserved and should not be modified in me or block:

• key

• mountPoint

• type

• name

8.1. Code 237

Dashticz Documentation, Release beta

And specifically for me:

• block

8.1.5 Github workflow

We use a PR (Pull Request) based workflow, with preferably one new/changing feature per branch. All work is derived
from the beta branch. If the beta branch is stable, a master branch will be derived from the beta branch.

For big changes a temporary branch will be created to test the new functionality by a bigger audience.

Basic workflow

1. Create an account on Github.com

2. Fork the Dashticz repository on github.com

3. Clone your own repository locally:

cd <working directory of choice>
git clone https://github.com/<username>/dashticz
cd dashticz

4. Add the dashticz upstream remote:

git remote add upstream https://github.com/Dashticz/dashticz

5. Get the latest changes:

git checkout beta
git fetch upstream
git merge upstream/beta

6. Create a new branch for your changes:

git checkout -b mynewfeature

7. Make the changes

8. Add the new files (if any):

git add .

9. Commit the changes:

git commit -am "My new feature"

10. Push the changes to your own Dashticz repository:

git push origin mynewfeature

11. On github.com create a Pull Request with the request to merge your own branch into beta

12. Have some patience, and lokonli will merge your PR

After your PR has been merged, you should cleanup your repository.

13. Delete your mynewfeature branch from your Dashticz repository on github.

238 Chapter 8. For Developers

Dashticz Documentation, Release beta

14. Switch back to the beta branch:

git checkout beta

15. get the new beta:

git fetch upstream
git merge upstream/beta

16. Delete your local mynewfeature branch. It’s not needed anymore, because it has been merged:

git branch -d mynewfeature

If you want to make additional changes, go back to step 6

Test branch

If additional testing is required then lokonli will not merge directly into beta (step 12), but will create a test branch. To
continue working on this testbranch:

git fetch upstream
git checkout testbranch
git merge upstream/testbranch
git checkout -b mynewfeature

Then you have a new branch ‘mynewfeature’ derived from testbranch. Continue with step 7-10 to make your changes.

On github create a PR with the request to merge your new branch into testbranch.

Updating documentation

If possible update the documentation together with your code changes in the same PR. For updating the documentation
see Documentation

8.2 Design

Starting to collect some design info here. Some structure will be added later.

8.2.1 File structure

main.js is the starting point. This file is responsible for:

• loading all necessary js files, the config files, the css files.

• Creation of screen and column layout, including the multi screen swiper, top bar, settings screen.

When this is ready, blocks.js gets the lead.

8.2. Design 239

Dashticz Documentation, Release beta

Blocks

blocks.js is responsible for creating all blocks on the Dashboard. Depending on the block type this responsibility is
delegated to helpers.

Switches are handled by switches.js Thermostats and EvoHome devices are handled by thermostat.js

Several specific Domoticz devices are handled by block.js itself, like P1 smart meter and TempHumBar devices.

Most of the non-Domoticz block will be handled by special components, which can be found in the js/components
folder. The Dashticz.js file functions as generic component factory. Depending on the block type, the specific compo-
nents factories are called to create a component instance.

Services

The most important service modules are:

• dashticz.js: Responsible for creation of components, as described above

• domoticz-api.js: Responsible for handling all interaction with Domoticz

• settings.js: Responsible for configuring all Dashticz settings

8.2.2 Domoticz-api

This module handles most of the communication with Domoticz. Two types of communication channels are being
used:

• websocket connection, supported from Domoticz 2020.1 onwards.

• http connection

At startup domoticz-api tries to initiate a websocket connection. The advantage of a websocket connection is:

• less overhead, since the websocket connection stays alive. So no overhead for recreating a http connection

• Domoticz actively pushes device changes to the websocket interface, meaning instant device updates in Dashticz

At startup Domoticz-api requests all devices from Domoticz, and caches the information for later use.

Subscribe

domoticz-api provides a subscribe interface:

Domoticz.subscribe(idx, getCurrent, callback)

idx: Domoticz device index you want to get a subscribtion on.

To subscribe to a variable add ‘v’ in front of the variable index, like ‘v1’. To subscribe to a group or scene add ‘s’ in
front of the group index, like ‘s1’

There are some special purpose indices, which can be subscribed to as well:

idx Description
_secstatus Domoticz security status
_secondelay Delay used by Domoticz before switching the alarm to ‘Arm Away’ or ‘Arm Home’
_Sunrise Sunrise time
_Sunset Sunset time

240 Chapter 8. For Developers

Dashticz Documentation, Release beta

If getCurrent is set to true then the callback function will be called with the current value directly.

The callback function receives the device info as parameter.

getAllDevices

You can request the actual status of devices via Domoticz.getAllDevices:

var alldevices = Domoticz.getAllDevices();
var device = alldevices[123]; //To get device 123

Domoticz request

Use the request interface to send a request to Domoticz:

request(query, forcehttp)

Parameter Description
query The Domoticz json query: everything after /json.htm?
forcehttp Set to true (=default) to enforce http connection.

The default value of forcehhtp is true, because Domoticz doesn’t handle all websocket commands correctly. Examples:

* EvoHome devices (and thermostats?)

The function request returns a JQuery promise, containing the Domoticz reply as resolve parameter.

Message queue

Sometimes it might be needed to prevent handling of device updates by Dashticz. You can put the message queue of
a specific id on hold via:

Domoticz.hold(idx)

Don’t forget to release the message queue afterwards:

Domoticz.release(idx)

8.3 Translations

Dashticz supports a long list of languages. The language files are managed via https://lokalise.co.

We appreciate your contributions to the language files! Please leave a remark in the Dashticz forum:

https://www.domoticz.com/forum/viewtopic.php?f=67&t=18697

8.3.1 Guidelines for merging

Changes to ‘en-uk.json’ and ‘nl-NL.json’ in the beta branch are pulled automatically by lokalise.co

In lokalise.co:

8.3. Translations 241

https://lokalise.co
https://www.domoticz.com/forum/viewtopic.php?f=67&t=18697

Dashticz Documentation, Release beta

• edit incorrect and missing translation keys.

• click ‘download’ -> build only.

This will create a new pull request in the Dashticz repository.

On github:

• Merge the pull request.

• Delete the lokalise branch.

Done.

8.3.2 Merging of changes in other language files

Save the changed language file locally.

In Lokalise click on ‘upload’ and upload the changed language file.

Then follow the same steps as above.

8.4 Documentation

All documentation is maintained in docs-folder of the Github source tree.

For generating the documentation Sphinx and readthedocs.org is being used.

For more information see:

• sphinx

• readthedocs

• rst: reStructuredText, the markup language we use

Basic

For basic modification of the documentation just edit the files in the docs folder, push your changes to github and
create a pull request. After merging of the change the documentation will be pulled by readthedocs.org and the new
version of the documentaion becomes available on https://dashticz.readthedocs.io

Advanced

1. install Sphinx:

sudo apt update
sudo apt install python-pip
sudo apt install python-sphinx

2. Make changes:

cd [dashticz_folder]/docs
nano mydocumentation.rst

3. Create a local html version:

242 Chapter 8. For Developers

https://dashticz.readthedocs.io

Dashticz Documentation, Release beta

cd [dashticz_folder]/docs
make html

4. Check whether you are happy with the result by opening the generated html file in the build folder in your
browser.

5. Clean up the build results:

make clean

6. Push your changes to Github and create the PR.

8.4.1 Coding styles

Headers

Example:

Header level 1
==============

Header level 2

Header level 3
~~~~~~~~~~~~~~

These header levels will appear in the table of contents on the left.

Tables

Preferred method for defining a parameter table:

.. list-table::
:header-rows: 1
:widths: 5, 30
:class: tight-table

* - Parameter
- Description

* - width
- ``1..12``: The width of the block relative to the column width

* - title
- ``'<string>'``: Custom title for the block

Alternative 1:

.. csv-table::
:header: Parameter, Description
:widths: 5, 30
:class: tight-table

forcerefresh,"| Control the caching-prevention mechanism of the images for a
→˓button.

| ``0`` : Normal caching behavior (=default)

(continues on next page)

8.4. Documentation 243



Dashticz Documentation, Release beta

(continued from previous page)

| ``1``, ``true`` : Prevent caching by adding t=<timestamp> parameter to the url.
→˓Not all webservers will handle this correctly

| ``2`` : The image is loaded via php, preventing caching. (php must be enabled on
→˓your Dashticz server)"

The previous example will not show a horizontal scroll bar. If you want to have a horizontal scroll bar then remove
:class: tight-table

Alternative 2:

============ ===============================
Parameter Description
============ ===============================
forcerefresh | Control the caching-prevention mechanism of the images for a button.

| ``0`` : Normal caching behavior (=default)
| ``1``, ``true`` : Prevent caching by adding t=<timestamp> parameter

→˓to the url. Not all webservers will handle this correctly
| ``2`` : The image is loaded via php, preventing caching. (php must

→˓be enabled on your Dashticz server)
============ ===============================

244 Chapter 8. For Developers



CHAPTER 9

Indices and tables

• genindex

• modindex

• search

245


	Introduction
	Why Dashticz
	Concept

	Getting started
	Installation
	Configuring a basic Dashticz Dashboard

	Configuration
	Dashticz configuration
	Blocks
	Columns
	Screens

	Customizations
	Styling via custom.css
	Functionality via custom.js

	Tips and Tricks
	Dashticz security
	Dashticz security (method 2)
	Use of Web Fonts
	Changing alert icon colors dynamically

	Release Notes
	Upgrade instructions
	Release Notes

	Troubleshooting
	Connection
	Docker
	Domoticz blocks

	For Developers
	Code
	Design
	Translations
	Documentation

	Indices and tables

